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Computational Micromechanics Models

for Damage and Fracture of

Fiber-Reinforced Polymers

TESIS DOCTORAL

Miguel Herráez Matesanz
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nifica. Lo he visto muchas veces, aunque en todas ellas yo era un simple espectador.

Pero hoy no. Es la hora, es tiempo de terminar: defender la tesis y despedirse.

Hasta siempre Imdea

Miguel Herráez Matesanz
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Resumen

En la actualidad, el empleo de materiales compuestos poliméricos reforzados con

fibras (FRP) se ha intensificado en aplicaciones que requieren materiales con altas

propiedades espećıficas. Numerosos modelos constitutivos fenomenológicos y con

base f́ısica han sido propuestos en la literatura para predecir la respuesta mecánica

de láminas unidireccionales de estos materiales. No obstante, los parámetros re-

queridos por dichos modelos hacen necesaria la ejecución de extensas y costosas

campañas experimentales. Es por esto que los ensayos virtuales de materiales com-

puestos aparecen como una alternativa prometedora para reducir los programas ex-

perimentales dedicados a la caracterización mecánica de los mismos. Además, dado

que el fallo de los FRPs está controlado por fenómenos que tienen su origen a escala

microscópica, es fundamental adoptar una estrategia basada en la multiescala, capaz

de capturarlos mediante modelos micromecánicos.

Cabe destacar que esta tesis forma parte de la estrategia multiescala desarrollada

por el Grupo de Materiales Compuestos del Instituto IMDEA Materiales durante

los últimos años.

En esta tesis, se ampĺıa la capacidad de la micromecánica computacional (CMM)

para establecer predicciones virtuales de diferents procesos de fractura en com-

puestos unidireccionales reforzados con fibras con respecto al estado del arte. Para

ello, las propiedades mecánicas de los constituyentes del material compuesto son

determinadas mediante micromecánica experimental. A este respecto, se han desar-

rollado dos nuevas técnicas experimentales para la caracterización longitudinal de

las fibras. La primera consiste en ensayos de tracción en fibras individuales a las que

se les ha realizado una entalla para medir su tenacidad de fractura; mientras que

la segunda técnica se basa en la compresión de micropilares tallados en la sección

transversal de fibras con los que obtener su resistencia a compresión.



Se ha evaluado el efecto de la sección transversal de la fibra sobre la resistencia

transversal de una lámina unidireccional mediante CMM, haciendo uso de elementos

representativos de volumen (RVE) con condiciones de contorno periódicas (PBC).

El despegue de la intercara fibra/matriz se representa a través de un modelo de

zona cohesiva (CZM) con una ley de tracción-separación, mientras que un mod-

elo elasto-plástico, dependiente de la presión hidrostática, que incluye daño por

tracción y compresión se emplea para capturar el comportamiento no lineal de la

matriz polimérica. El comportamiento mecánico de ambos constituyentes se cali-

bra utilizando las propiedades obtenidas por medio de los ensayos micromecánicos

mencionados anteriormente.

Aprovechando la estrategia CMM, se ha analizado el fenómeno de kinking de

las fibras que tiene lugar cuando una lámina unidireccional es sometida a cargas

de compresión en la dirección de las fibras. Un RVE de un apilamiento de láminas

a ±45◦ y un modelo 3-D con una sola fibra se han empleado conjuntamente para

estimar la resistencia a compresión de una lámina unidireccional y compararla con

las predicciones de la teoŕıa de kinking de fibras (FKT). Adicionalmente, los re-

sultados en régimen de post-fallo del modelo CMM han sido comparados con las

predicciones de un modelo de daño continuo (CDM) para modelos de mesomecánica

computacional desarrollado por Bergan and Leone (2016) del NASA Langley Re-

search Center. Cabe destacar que el modelo CMM se ha empleado para predecir los

parámetros de entrada requeridos por el modelo CDM.

En esta tesis, las capacidades de la micromecánica computacional se han ampli-

ado desde la predicción de las propiedades elásticas y resistencias hasta la simulación

de procesos de fractura en materiales compuestos. Para caracterizar la tenacidad

de microestructuras heterogéneas, se ha desarrollado una estrategia original para el

estudio de procesos de fractura en materiales quasi-frágiles. Este método se basa

en la aplicación del campo de desaplazamientos alrededor de la punta de una gri-

eta proporcionado por la mecánica de fractura elástica lineal (LEFM) en modo I.

Esta técnica se aplica al análisis virtual de la propagación de una grieta intralaminar

sometida a tracción mediante un modelo 2-D de celda embebida. El proceso de frac-

tura es capturado con gran precisión, no sólo por la enerǵıa de fractura intralaminar,

sino también por la forma caracteŕıstica de la curva de crecimiento de grieta (curva-

R). A continuación, la respuesta a fractura de la microestructura es homogeneizada

mediante una ley de ablandamiento equivalente, que puede ser empleada en modelos

constitutivos en escalas superiores (mesomecánica computacional).



Todas las microestructuras han sido obtenidas numéricamente a partir de una

metodoloǵıa nueva y muy versátil que ha sido incluida en una interfaz de usuario

desarrollada por el autor llamada Viper, acelerando la fase de pre-proceso en éste

y futuros trabajos.





Abstract

Nowadays, fiber-reinforced polymers (FRP) are extensively used in applications

where outstanding specific mechanical properties are required. Some phenomeno-

logical and physically-based failure models have been proposed in the literature

to predict the mechanical performance of classical unidirectional composite plies.

Unfortunately, their input parameters need to be obtained by means of costly and

time-consuming experimental campaigns. For this reason, virtual testing of compos-

ite materials stands out as a promising strategy to reduce the experimental programs

devoted to the characterization of these materials. Nevertheless, as failure of FRP is

controlled by phenomena that take place at the microscale, there is a need to adopt

a multiscale scheme which captures them by means of micromechanical models.

It must be highlighted that this thesis is embedded within the bottom-up multi-

scale approach developed by the Composite Materials Group of IMDEA Materials

during the last years.

In this thesis, the potential of computational micromechanics (CMM) to make

virtual predictions of some fracture processes in unidirectional fiber reinforced com-

posites is extended with respect to the state of the art. To this end, the mechanical

properties of the material constituents are determined through experimental mi-

cromechanics. In this regard, two novel experimental techniques devoted to the

longitudinal characterization of the reinforcement fibers were developed. The first

one consists of tensile testing single filaments of notched fibers to measure their

fracture toughness; whereas, the second technique is based on the compression of

micropillars milled on the cross section of individual fibers to obtain its compressive

strength.

The effect of the fiber cross section on the transverse strength of a unidirec-

tional ply was studied by means of CMM, making use of representative volume



elements (RVE) under periodic boundary conditions (PBC). Fiber/matrix interface

debonding is represented by means of a cohesive zone model (CZM) with a traction-

separation law, whereas a pressure dependent, elasto-plastic model that includes

tensile and compressive damage is employed to capture the nonlinear behavior of

the polymer matrix. The mechanical response of both constituents is calibrated

using the properties obtained by the micromechanical tests mentioned previously.

Taking advantage of the CMM strategy, the fiber kinking phenomenon that

takes place when a unidirectional ply is loaded under longitudinal compression was

analyzed beyond the state of the art. An RVE of a ±45◦ stacking of plies and a

single-fiber 3-D model are combined to give an estimate of the compressive strength

and are compared to the fiber kinking theory (FKT) predictions. In addition, the

results of the post-peak response of the CMM model are compared to the predictions

of a continuum damage model (CDM) for computational mesomechanics modeling

developed by Bergan and Leone (2016) from NASA Langley Research Center. More

importantly, the CMM model is also used to predict the input parameters for the

CDM model.

In this thesis, the capabilities of computational micromechanics are extended

from the prediction of elastic and strength properties to the simulation of frac-

ture processes in composite materials. To characterize the toughness of composite

microstructures, an original framework to study fracture processes in quasi-brittle

materials was developed. This approach is based on the linear elastic fracture me-

chanics (LEFM) solution of the displacement field around a crack tip under mode

I loading. The methodology is applied to the virtual analysis of the intralaminar

transverse crack propagation under tension by means of a 2-D embedded cell model.

The fracture process is accurately characterized, not only by the intralaminar frac-

ture energy, but also the shape of the crack resistance curve (R-curve). Afterwards,

the fracture response of the microstructure is homogenized into an equivalent soft-

ening law, that may be used in higher scale constitutive models (computational

mesomechanics).

All the microstructures employed in this thesis were obtained numerically from

a novel and versatile algorithm. This was embedded in an in-house developed user-

interface called Viper, thus, speeding up the pre-processing stage and making it

available for other users.



Glossary of terms

In general, the superscripts f , m, c are referred to quantities of the fiber, matrix

and fiber/matrix cohesive interface respectively. Whereas the subscripts t, c indicate

tensile and compressive quantities.

x1 Longitudinal direction (parallel to the fibers)

x2 Transverse direction

x3 Through-the-thickness direction

ε Strain tensor

∆ε Strain increment tensor

ε̃pl
t , ε̃

pl
c Equivalent plastic strain under tension and compression

ε0 Strain at damage initiation

εu Strain at ultimate failure

σ Nominal stress tensor

σ̃ Effective stress tensor

S Compliance tensor

Q Stiffness tensor

CT Tangent constitutive tensor

I Identity tensor

M Damage evolution tensor

P Load

H Hardness

Ac Contact area of indentation

Em Elastic modulus of the matrix

νm Poisson ratio of the matrix

cm Cohesion parameter of the matrix (Drucker-Prager model)

φm Internal friction angle of the matrix (Drucker-Prager model)

σmt Uniaxial tensile strength of the matrix

Gm
t Fracture energy of the matrix under uniaxial tension



σmyc Uniaxial compressive yield strength of the matrix

σmuc Uniaxial ultimate compressive strength of the matrix

Dm
t , D

m
c Damage variables under tension/compression of the matrix

ψm Dilation angle of the material model of the matrix

εm Eccentricity parameter of the material model of the matrix

σb0/σc0 Biaxial to uniaxial compressive ratio of the material model of the matrix

Km
c Tensile and compressive meridian yield condition ratio of the matrix

µm Viscosity of the material model of the matrix

αm Coefficient of thermal expansion of the matrix

N c Normal tensile strength of the interface

Sc Shear strength of the interface

Gc
n, G

c
s Fracture energies under modes I and II of the interface

µc Friction coefficient of the interface

tn, δn Normal cohesive traction and displacement jump

ts, δs Longitudinal shear cohesive traction and displacement jump

δ0 Separation at damage initiation

δu Separation at ultimate failure

kcnn Penalty stiffness in the normal direction of the interface

kcss Penalty stiffness in the shear direction of the interface

ηcBK Benzeggagh-Kenane power exponent of the interface

Dc Damage variable of the interface

Vf Fiber volume fraction

Ef
1 Longitudinal elastic modulus of the fiber

E0f
1 Initial longitudinal elastic modulus of the fiber of the nonlinear model

cf Nonlinear parameter of the longitudinal elastic modulus

Ef
2 Transverse elastic modulus of the fiber

Gf
12 Longitudinal shear modulus of the fiber

Gf
23 In-plane shear modulus of the fiber



νf12 Longitudinal Poisson ratio of the fiber

νf23 In-plane Poisson ratio of the fiber

Xf
t , G

f
t Strength and fracture energy under longitudinal tension of the fiber

Xf
c , G

f
c Strength and fracture energy under longitudinal compression of the fiber

αf1 Coefficient of thermal expansion in the longitudinal direction of the fiber

αf2 Coefficient of thermal expansion in the transverse direction of the fiber

d Fiber diameter (circumscribed diameter of non-circular fibers)

deff Equivalent fiber diameter (non-circular fibers)

dv Diameter of the channels or ”islands” of hollow fibers

Ifx Second moment of inertia of the cross section of the fiber

nl Number of lobes of a lobular fiber

ne Number of edges of a polygonal fiber

χ Smoothing ratio of a smooth polygonal fiber

ξ Hollowness ratio of a C-shaped fiber

θ Angular amplitude of a C-shaped fiber

L0 Reference length in the Weibull distribution for fiber strength

σ0 Weibull strength

m Weibull shape parameter

F Weibull cumulative density function (cdf)

a Crack length

a0 Initial crack length

∆a Crack propagation length

KI Stress intensity factor under mode I

KIC Critical stress intensity factor under mode I

Kf
IC Mode I fracture toughness of the fiber

σ∞ Remote stress

Y Non-dimensional stress intensity factor

GI Energy release rate under Mode I



Gf
IC Critical energy release rate under Mode I of the fiber

W Elastic strain energy density

~t Traction vector

~u Displacement vector

Γ J-integral contour

E∗ Effective elastic modulus

lp Plastic process zone length

ρ Volumetric density

λ Linear density

dp, hp Micropillar diameter and height

θp Taper angle of the micropillar

ε̇ Strain rate

σc Compressive stress

εc Compressive strain

k0 Linear elastic stiffness during the micropillar compression test

δ̃ Tolerance minimum distance between adjacent fibers

Ai Cross section area of fiber i

Aij Overlapping cross sectional area of fibers i and j

Υ Potential defined to evaluate fiber overlapping

texec Execution time

V loc
f Local fiber volume fraction

sr Sampling radius

P (x, y) Sampling point with coordinates (x, y)

cv Coefficient of variation of the Voronoi cells area

Avi Voronoi cell area of fiber i

δ1, δ2 Distance to the first and second nearest neighbors

θ1 Orientation of the first nearest neighbor

g(r) Radial distribution function



K(r) Second-order intensity function

x Position vector

S2(x) Two-point probability function

Sij2 (xA,xB) General two-point probability function

Di(α) Domain covered by phase i of sample alpha

χi(xA, α) Characteristic function

Ω Area of the sample

W,H Dimensions in pixels of a bitmap of the microstructure

Na Number of fibers per unit area

Îi(r) Indicator function

K̂ref(r) Second-order intensity function of a CSR dispersion

L̂(r) Besag’s function

∆T Temperature drop during the cool down process
−→
Uk Displacement of master node k

ui Displacement in the i direction

l∗ Characteristic element length

E11, E22 Longitudinal and transverse elastic modulus of the ply

ν12, ν23 Longitudinal and transverse Poisson ratio of the ply

G12, G23 Longitudinal and transverse shear modulus of the ply

κ, µ Parameters for the small scale bridging analytical model

G2+ Intralaminar tensile fracture energy

lc Characteristic length of the fracture process zone (FPZ)

wc Critical separation of a cohesive law

R(∆a) Resistance curve (R-curve)

ϕ0 Initial fiber misalignment

ϕ Fiber rotation

ϕmax, ϕavg Maximum and average fiber rotation of the single-fiber CMM model

wkb Width of the kink band



ωkb Relative kink band size

α, η Parameters of a Ramberg-Osgood nonlinear curve (Ch. 6)

τY Shear yield limit of a perfectly-plastic constitutive model

τL Shear yield limit assumed for a nonlinear constitutive model

σr Residual crushing stress during fiber kinking

β Angle of the kink band

J2 Second invariant of the stress tensor

fCL Constitutive law relating shear strain to shear stress

γc Shear strain to failure upon fiber kinking

E∗1 Longitudinal elastic modulus of the ply (nonlinear model)

cl Parameter of the nonlinear longitudinal elastic modulus model

αR Coefficient of Rayleigh damping

τµ Frictional shear stress at the interface

D Damage variable

F1+, F1− Damage activation functions under longitudinal tension and compression

φ1+, φ1− Loading functions under longitudinal tension and compression

r1+, r1− Elastic domain thresholds under longitudinal tension and compression



List of acronyms

FRP Fiber reinforced polymer

CFRP Carbon fiber reinforced polymer

CDM Continuum damage mechanics

CMM Computational micromechanics

CMG Composite Materials Group (IMDEA Materials)

ICME Integrated computational materials engineering

UD Unidirectional

FE Finite element

RVE Representative volume element

PBC Periodic boundary conditions

MN Master node

ROI Region of interest

FIB Focused Ion Beam

SEM Scanning electron microscopy

AFM Atomic force microscopy

SFT Single-fiber test

LEFM Linear elastic fracture mechanics

FPZ Fracture process zone

PAN Polyacrylonitrile

PE Polyethylene

RSA Random sequential adsorption

HCM Hard-core model

NNA Nearest-neighbor algorithm

CSR Complete spatial random

PDF Probability density function

CDF Cumulative density function

DFT Discrete Fourier transform



IDFT Inverse of the discrete Fourier transform

FFT Fast Fourier transform

ILSS Interlaminar shear strength

BK Benzeggagh-Kenane

ISS Interface shear stress (ts)

INS Interface normal stress (tn)

INS+ Interface normal tensile stress

INS− Interface normal compressive stress

SENT Single-edge notched test

FPM Field projection method

FKT Fiber kinking theory

UMAT User material subroutine in Abaqus/Standard

VUMAT User material subroutine in Abaqus/Explicit

DGD Deformation gradient decomposition

ASTM American Society for Testing and Materials

EPP Elastic perfectly-plastic



”You know, life is difficult”.

Fernando Naya (2015)
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1Introduction and objectives

In the present state of technological development, small diameter fibers as carbon,

glass, aramid or polyethylene, stand among the strongest man made materials and

their applications as reinforcement in composites have specially grown in lightweight

applications due to their excellent strength and stiffness to weight ratio. Fibers are

normally embedded in a matrix made of metal, ceramic or polymer, which plays the

role to maintain the fibers adequately oriented according to specific design directions

while providing them with an effective protection in harsh environments.

Fiber-reinforced polymers, or FRPs, are preferred candidates in structural appli-

cations where the strength to weight ratio leads the structural design process. One of

the main drawbacks regarding the use of these materials is their complex mechanical

behaviour, hardly predictable, which depends on the properties of the constituents

(fibers, matrix and interfaces) as well as on their spatial distribution within the

material. Manufacturing conditions also play an important role and are responsible

for the generation of defects in the form of voids, interface debonding, resin pockets

or dry fiber areas which are considered detrimental for the final performance of the

material. The mechanical response of FRPs is, obviously, strongly influenced by the

mechanical properties of the high performance fibers used (carbon, glass, aramid,

etc.) albeit their spatial distribution, tow architecture and cross section governs the

basic deformation and failure mechanisms (González and Llorca, 2007a).

1.1 Composite materials and industry requirements

Composite materials, shortened to composites for brevity, are defined as complex

materials made from two or more constituents with significantly different physical

or chemical properties. Smart combinations of different constituents can provide a
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desired response of the composite making it perfect for a particular given application.

For this reason, man-made composites have a long history, e.g. Egyptians already

built houses using wattle and daub and ancient Mesopotamians realized that gluing

wood at different angles the resulting plywood exhibited better properties than the

ordinary ones. Owing to this tailoring capability, different types of composites can

be found nowadays in aerospace, energy, automobile, construction, sports and many

other technological industries.

Regarding lightweight structural applications, such as spacecraft and aircraft

structures, fiber reinforced polymers are the most extensively used among all the

high performance composites. FRPs are made of a polymer matrix reinforced with

stiff and strong continuous fibers that can be weaved, knitted or braided in order

to create a textile sheet that will ease the manufacturing process. However, for

high-end applications requiring superior strength and stiffness, composite laminates

made by stacking several unidirectional (UD) plies are still the reference architec-

ture. Each ply has millions of fibers running in a single direction, and the resulting

material is highly anisotropic. The fibers are the load-bearing phase, while the ma-

trix is mainly used to maintain the fibers oriented according to the design direction.

The properties of the final laminate will depend on the stacking sequence of the

individual plies. Therefore, there exists an enormous freedom for the custom design

of composite laminates in order to fully exploit their mechanical performance. How-

ever, predicting the mechanical performance of composite materials is not straight

forward due to their anisotropy and heterogeneity, so strategies like the multiscale

approach are extremely useful to face their analysis in a systematic and efficient

manner.

1.2 Multiscale strategy

The hierarchical structure of fiber-reinforced composite materials makes them ideal

candidates to apply multiscale strategies in their analysis. It is well known that

their mechanical properties at the millimeter scale are controlled by the constituent

properties and the distribution of the reinforcement fibers, whose cross section is of

the order of micrometers.

A classical strategy is the so called top-down multiscale approach, where ma-

terial testing begins studying the composite structure and identifying the weakest

regions where damage is most likely to occur. Then, these sections are subjected

2
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to further refined analysis using more sophisticated constitutive models to predict

the material response up to the final fracture. Nevertheless, this strategy often re-

lies on phenomenological models whose constitutive relations may depend on the

calibration tests. Indeed, due to the phenomenological nature of these models, the

input parameters need to be characterized for each material configuration, thus, the

results obtained for a given material system cannot be extrapolated to a material

with different fiber volume fraction, ply thickness or laminate stacking sequence. In

conclusion, this multiscale approach requires a massive investment on experimental

testing in case of considering different material systems, manufacturing processes,

loading conditions, composite configurations and architectures, etc.

A more efficient strategy is the bottom-up multiscale strategy (Llorca et al.,

2011) which aims to predict the mechanical behavior of the material starting from

the scale of the constituents (fiber, matrix and interfaces), moving up to the scale

of an individual ply, laminate, component and the final structure, as illustrated in

Figure 1.1.

This strategy takes advantage of the fact that composite structures are made

up of laminates which in turn are obtained by stacking individual plies with dif-

ferent fiber orientation. This leads to the analysis of three different entities (ply,

laminates and components) whose mechanical behavior is characterized at three dif-

ferent length scales, namely fiber diameter, ply and laminate thickness, respectively.

Fiber diameters are of the order of a few µm, whereas the ply thickness ranges from

modern ultra-thin plies of ∼ 30 µm up to conventional plies of 150 ∼ 300 µm, and

standard laminates may have a few millimeters in thickness. This clear separation

between length scales enables the usage of multiscale modeling by computing the

properties of one entity (e.g. the microstructure) at a given length scale, and passing

this information to the simulations at the next length scale to study the mechanical

performance of the larger entity (e.g. an individual ply).

Following this approach, virtual testing of composites up to the component level

is carried out in successive steps within the framework of the finite element method

(FEM). Firstly, computational micromechanics (CMM) is employed to predict the

ply properties from the experimental characterization of the mechanical properties

of the constituents (matrix, interface and fiber), together with the volume fraction

and spatial distribution of fibers within the ply.

Once the ply properties (stiffness, strength and toughness) have been derived

from micromechanical virtual tests, computational mesomechanics is then employed

3
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Figure 1.1: Bottom-up multiscale simulation scheme to perform virtual mechanical
tests of fiber-reinforced composite materials.

to determine the homogenized mechanical behavior of the laminate, together with

the interlaminar behavior between adjacent plies. The global mechanical response

of the laminate is homogenized again and forwarded to macroscale models (com-

putational mechanics). These latter models consider multiple subcomponents or

subassemblies that are usually represented by means of planar elements (shells).

This thesis focuses on the initial stages of the bottom-up multiscale strategy:
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first, the experimental characterization of the composite constituents; and later, the

development of micromechanical models for the analysis of various failure mecha-

nisms in unidirectional fiber-reinforced composites.

1.2.1 Constituents characterization

Thorough characterization of the constituents is crucial to obtain reliable input

properties for simulations relying on these values. As observed previously, in a FRP

composite not only the fibers and the matrix need to be characterized, but also their

interface which exhibits different properties and controls the damage mechanism

known as fiber/matrix debonding.

Matrix and fiber/matrix interface determine, mainly, the mechanical perfor-

mance of the composite in the direction perpendicular to the fibers, as well as

the shear deformation modes. Thus, experimental characterization of the matrix

and the fiber/matrix interface is required to accomplish precise results from virtual

tests. Characterization of the matrix has been pursuit by testing neat resin coupons

(Fiedler et al., 2001). Nevertheless, this kind of tests does not take into account the

local residual stresses due to the manufacturing/curing process of the composite ply.

Similarly, ad hoc fabricated specimens for the characterization of the interface have

been developed over the last decades, e.g. the drop test (Miller et al., 1987), and the

fragmentation test (Kelly and Tyson, 1965), among others. However, they lack the

same features as the neat resin coupons: the unrealistic stress state of the dedicated

specimens, missing the constraining effect of the surrounding fibers, as well as the

residual thermal stresses. Novel techniques based on the experimental technique of

nanoindentation have been developed to carry out in situ microtests to characterize

the polymer matrix (Fiedler et al., 2001; Rodŕıguez et al., 2012b; Naya, 2017) and

the interface (Canal et al., 2012a; Rodŕıguez et al., 2012a).

Long fibers are intended to provide high strength and stiffness in the longitudinal

direction in an FRP. Therefore, experimental characterization of the fibers is typi-

cally focused on their longitudinal properties (Tagawa and Miyata, 1997; Tsai and

Daniel, 1999; Cheng et al., 2005; Kant and Penumadu, 2013; Herráez et al., 2016a).

Ex situ testing of individual filaments has become the most popular strategy adopted

by the research groups in the field.

It is important to note that some fibers, like carbon fibers, exhibit a strong

anisotropy due to their internal morphology. For that reason, the longitudinal char-

acterization of this type of fibers is not sufficient to fully describe their elastic behav-

5
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ior in the transverse direction or under shear loads. However, experimental testing

of the transverse properties of these small-diameter fibers is challenging, and just

a few works in the literature face this problem (Hadley et al., 1965; Phoenix and

Skelton, 1974), to the best knowledge of the author.

A review of the most remarkable state-of-the-art experimental techniques de-

voted to the characterization of the FRP constituents (matrix, fibers and interface)

is carried out in Chapter 2, together with a complete methodology to characterize

the longitudinal properties of high performance fibers.

1.2.2 Computational micromechanics

Computational micromechanics has emerged in recent years as a powerful tool to

predict the influence of the constituent properties on the ply behaviour under differ-

ent loading conditions. This approach is based on the numerical simulation of the

mechanical response of models where the constituents of the material are explicitly

represented, such as periodic representative volume elements (RVE) of the composite

microstructure (González and Llorca, 2007a; Totry et al., 2008a,b; Vaughan, 2011;

Herráez et al., 2015; Naya et al., 2017a,b) and embedded cell models (Canal et al.,

2012b; Herráez et al., 2018b) by means of the finite element method (FEM). As a

result, this numerical strategy considers detailed information of the microstructure

and constituent properties, inherited from micromechanical characterization of the

fiber, matrix and interface.

Periodic representative volume elements

In these methods, the inhomogeneous material is approximated by an infinite model

made of a periodic arrangement of the phases (fibers and matrix). The resulting peri-

odic microfields are evaluated by analyzing the repeating cell of the microstructure,

which may describe geometries ranging from rather simplistic to highly complex

representations of the real microstructure of the composite.

Periodic microfield approaches are often used to obtain constitutive equations for

composite materials in the nonlinear regime. Nevertheless, these methods become

invalid when the nonlinear phenomenon is associated with a inhomogeneous process,

such as a strain localization problem (e.g. cracking). In these cases, the stress

vs. strain response obtained from the model during the damage propagation regime

depends on the size of the RVE (Bazant and Planas, 1997).

6



1. Introduction and objectives

Several strategies have been developed to handle the analysis of heterogeneous

materials at the microlevel. The pioneer approach called method of the cells was

developed by Aboudi (1989). In this method, an analytical approximation is em-

ployed to obtain the stress and strain fields over a microstructure that corresponds

to a square arrangement of fibers. Another examples of analytical methods to solve

the unit cell problem are the transformation field analysis (Dvorak, 1992) or the

high-fidelity generalized method of cells (Aboudi, 2004). Although these analyti-

cal approaches use highly idealized microstructures and provide limited information

about the microscopic field, they are useful to obtain constitutive models at an ex-

tremely low computational cost. Besides the previous simplistic approximations, the

analysis of composites through periodic microfield strategies is often tackled through

more complex and realistic cells which are solved by means of numerical tools such

as FEM.

The mechanical behavior of composite materials can be studied through the nu-

merical simulation of a representative volume element (RVE) of the microstructure.

The RVE was originally defined by Hill (1963) as the smallest volume element of

a heterogeneous material for which the average stress and strain microfields con-

verge to an asymptotic value which is size independent and represents the effective

macroscopic constitutive response. Therefore, the RVE should exceed a minimum

size to ensure that the simulation results are independent of the size and spatial

distribution of the reinforcements within the RVE. There are no procedures to pre-

dict the size of the RVE for the analysis of a particular composite, instead it should

be confirmed by sensitivity study. It was demonstrated that only a few dozens of

fibers or particles in an RVE are sufficient to simulate the mechanical behavior of

metal-matrix composites (Segurado and Llorca, 2002) and FRPs (Totry et al., 2010;

Trias et al., 2006).

In the multiparticle cell models, the computational micromechanical process to

simulate the behavior of the composite begins with the creation of an RVE. The

microstructure of a composite is usually idealized as a random dispersion of spheres,

ellipsis, circles, or any other geometrical shape which represents the cross section

of the reinforcement. To analyze the transverse behavior of unidirectional FRPs,

assuming infinitely long straight fibers, the microstructure is idealized as a dispersion

of circles which represent the fibers cross section. This fibers distribution should

be representative of the actual transverse section of the composite ply. Different

methodologies have been proposed to attain this goal, ranging from the replication

7
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Figure 1.2: Unit cell containing an RVE with randomly distributed fibers subjected
to uniaxial compression in the vertical direction and the periodic microstructure
generated by the repetition of the unit cell.

of the images of a real microstructure (Trias, 2005), the reproduction of statistical

spatial descriptors (Vaughan and McCarthy, 2010) or direct techniques to obtain an

idealized random isotropic microstructure (Segurado and Llorca, 2002; Melro et al.,

2008). The latter has become the most efficient and was proven to be sufficient to

reproduce the response of the composite ply under transverse loads (Trias et al.,

2006; Melro et al., 2008; Naya et al., 2017a).

A review of the most remarkable algorithms devoted to the numerical generation

of heterogeneous microstructures is performed in Chapter 3. This is followed by

the presentation of a novel strategy for the generation of arbitrary 2-D artificial

microstructures and the statistical evaluation of various microstructures generated

through this method. Finally, a user-interface application called Viper integrating

multiple capabilities for the generation of arbitrary microstructures, and evaluation

of spatial descriptors is presented in Chapter 3.

The RVE together with the boundary conditions must generate a valid stress

microfield regardless of the RVE size and the edges effect. The boundary conditions

applied play a key role on the assessment of the homogenized properties. The two

most common types of boundary conditions are: uniform boundary displacements

or isostrain (Hill-Reuss), and uniform boundary tractions or isostress (Hill-Voigt).

8
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Though simple to implement and cheap in terms of computational cost, these bound-

ary conditions are not representative of real stress states, as the edges of the model

induce artificial stress concentrations. In addition, the stiffness of the RVE tends

to be overestimated and underestimated, for the isostrain and isostress boundary

conditions respectively (Benssousan et al., 1978). Instead, periodic boundary con-

ditions (PBC) are considered to be a more general way to introduce far-field loads

into the RVE. The application of PBC along the edges of the RVE guarantees the

continuity between adjacent RVEs which deform like tiles of a jigsaw puzzle, see

Figure 1.2. However, the use of PBC requires the RVE to be periodic, such that

a fiber intersecting one of the edges must find its complementary fiber twin on the

opposite edge.

In Chapter 4, 2-D models consisting of periodic RVEs including PBC are em-

ployed to evaluate the effect of the fiber cross section on the transverse compressive

and tensile strengths of a unidirectional FRP ply.

A 3-D single-fiber RVE with PBC is employed in Chapter 6 to address the

fiber kinking phenomenon, which takes place when a unidirectional FRP ply is

loaded under longitudinal compression due to the shear stress induced in the polymer

matrix.

Embedded cell models

The embedded cell method consists of a model representing a specimen with two

different material descriptions. First of all, a region of interest (ROI) where the

microstructure is resolved with a high level of detail, including the matrix, fibers and

interfaces. This domain is embedded in a region where the material is considered as

a homogeneous domain. The embedding outer region is responsible for transmitting

the far-field loads to the ROI, where the stress and strain fields are resolved at

the microstructure level. This strategy enables the simulation of strain localization

problems such as crack propagation and other fracture processes. This approach

was successfully applied by Canal et al. (2012b) on the intralaminar transverse crack

propagation on FRP through a three-point bending test as illustrated in Figure 1.3.

Depending on the consideration of the outer region, Böhm (1998) came up with

the following two main types of embedded cell methods:

� Models in which the ROI and the embedding region represent explicitly the

microstructure, but where the discretization size is different (Sautter et al.,

9
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Homogeneous 
embedding region

Microstructure
region of interest (ROI)

Load

Initial pre-crack

Figure 1.3: Schematic of the embedded model employed to simulate a three-point
bending test on a unidirectional FRP (Canal et al., 2012b).

1993). These models avoid layer effects generated at the interface between both

regions, nonetheless, this type of model involves a very high computational

cost.

� Models which represent the embedding region through a homogeneous material

whose constitutive response is defined a priori based on empirical, analytical

or numerical approaches. These models are specially suited to study the lo-

calization and growth of cracks in heterogeneous materials (Wulf et al., 1996;

González and Llorca, 2007b; Canal et al., 2012b; Mortell et al., 2017) or the

stress concentrations around the crack tips (Aoki et al., 1996) or around local

defects (Xia et al., 2001).

The embedded cell method employing a homogeneous linear elastic material

model for the embedding region is used in Chapter 5 to analyze the intralaminar

transverse crack propagation in a fiber-reinforced polymer.

1.3 Motivation for the research

Despite UD composite laminates being the most simple architecture among FRPs,

predicting their mechanical performance is a complex task. Their strong anisotropy

10
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and heterogeneity are the origin of the different failure mechanisms exhibited for

different loading conditions.

Figure 1.4 illustrates the failure mechanisms suffered by a UD composite ply un-

der pure stress states (uniaxial tension, uniaxial compression and pure shear). When

a UD ply is loaded under uniaxial tension in the longitudinal direction, x, the failure

mechanism is fibers tensile failure. Whereas, under longitudinal compression, the

ply failure is dictated by the mechanism known as fiber kinking. This phenomenon

is triggered by the shear yielding of the matrix leading to an unstable stress state

resolved by the sudden rotation and breakage of the fibers along a narrow band

at an inclination angle β. Regarding the transverse loading cases, under tension

(σ22 > 0) ply failure is frequently determined by the failure of the fiber/matrix

interfaces, or debonding, followed by the tensile failure of the remaining polymer

matrix ligaments. In transverse compression, shear banding of the matrix, together

with interface debonding are responsible for the failure of the composite ply. In-plane

shear loads not only promote fiber debonding, but also large plastic deformation of

the matrix and fiber/matrix friction. The combination of all of these phenomena

provokes a remarked nonlinear response of the UD ply under in-plane shear (Hahn

and Tsai, 1973).

Figure 1.4: Schematics of the different failure mechanisms in unidirectional fiber-
reinforced composite plies under pure stress states.

11



1.4. Objectives of this thesis

Over the last decades a number of constitutive models to predict these fail-

ure modes and their interactions have been developed. It was Hashin (1980) who

first distinguished between matrix-dominated and fiber-dominated failure mecha-

nisms. Followed by Puck and Schürmann (2004), who extended Hashin’s criteria

by identifying distinct fracture planes, θfp, according to different loading conditions.

And finally the different versions of the LaRC (Langley Research Center) criteria:

LaRC02/03 (Dávila et al., 2003; Camanho et al., 2003; Dávila, 2005) and LaRC04

(Pinho et al., 2005).

1.4 Objectives of this thesis

Over the last years, the Composite Materials Group at IMDEA Materials has worked

intensely in the development of a multiscale strategy to evaluate the mechanical

performance of composite laminated materials (Llorca et al., 2011; Lopes et al.,

2016).

On one hand, precise characterization of the FRP constituents at the microscale

has been pursuit. Experimental characterization of the interface and the matrix was

successfully achieved by in situ microtests. Fiber push-in (Rodŕıguez et al., 2012a)

and push-out (Canal et al., 2012b) tests were developed to obtain the interface

shear strength, whereas instrumented nanoindentation on resin pockets (Rodŕıguez

et al., 2012b) and resin micropillars compression (Naya, 2017) were employed to

characterize the elasto-plastic behavior of the polymer matrix. However, there are

still some gaps in terms of characterization of constituent properties like the interface

toughness, and the fiber strength (in tension and compression), among others.

On the other hand, an extensive work on the computational micromechanics field

have been carried out to analyze the different failure mechanisms of UD composite

plies (Totry et al., 2008a; Naya et al., 2017a,b). The use of CMM tools enables the

analysis of unfeasible, or at least complex, experimental setups, which allow for a

deeper understanding of the underlying deformation mechanisms, and the influence

of many different variables (multiaxial stress states, material properties, etc). Ad-

ditionally, the CMM models are used to compute the mechanical properties of the

ply (stiffness and strength), so that they are passed to the constitutive models of

the homogenized ply at higher scales (computational mesomechanics). Nevertheless,

these constitutive models also require the stress vs. strain evolution after damage

initiation as an input parameter for each of the different failure modes. In this

12
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regard, an effort is required to design strategies capable of capturing the material

response during the damage evolution process (e.g. crack propagation, shear bands

yielding, fiber kinking...).

This thesis covers some of the gaps presented above. To accomplish this, the

following objectives are defined:

� Experimental characterization of fibers. To characterize the longitudinal me-

chanical properties of reinforcement fibers. In this regard, two novel experi-

mental techniques were developed to measure the longitudinal fracture tough-

ness and compressive strength of high performance fibers.

� Analysis of fracture and damage mechanisms of UD plies by means of compu-

tational micromechanics. To exploit the potential of CMM models to study

fracture processes in the post-peak regime. One of the failure mechanisms

considered in this work was the transverse failure, first attending to the ef-

fect of the fiber cross section on the transverse strength, followed by the de-

tailed analysis of the intralaminar crack propagation under transverse tension.

Later, the fiber kinking phenomenon was addressed through CMM based on

the model of Naya et al. (2017b) and was employed to evaluate a homogeneous

CDM constitutive model developed externally by Bergan and Leone (2016).

In addition, a versatile algorithm to generate arbitrary 2-D microstructures

was developed and integrated into a user-interface called Viper in order to

facilitate and speed up the pre-processing stage of CMM analysis.

� Multiscaling softening laws from the micro to the mesoscale. To obtain the

equivalent softening laws (stress vs. strain) or cohesive laws (tracion vs. sep-

aration) that reproduce the fracture response of the microstructure through

the characteristic R-curve. The procedure is illustrated in Figure 1.5: elas-

tic properties (E) and strength (Y ) are obtained from RVE models, whereas

the fracture energy (G) and the R-curve are computed through embedded cell

models. From the R-curve predicted through CMM (blue shade), the soft-

ening curve is inferred and can be applied to mesoscale models. Due to the

computational cost that 3-D models involve and the size of the RVEs required

to capture fracture processes properly, this homogenization procedure was ap-

plied to a simplified 2-D model to study the intralaminar transverse crack

propagation.
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Figure 1.5: Homogenization procedure following a bottom-up multiscale scheme
from the micro to the mesoscale for the intralaminar failure mode under transverse
tension.

1.5 Outline of the dissertation

The outline of this dissertation is as follows:

Chapter 2 presents a review of the state-of-the-art on the experimental tech-

niques devoted to the characterization of the FRP constituents (matrix, interface

and fiber). In the second part of the chapter, two novel techniques for the experi-

mental determination of the fracture toughness and compressive strength of fibers

are proposed. The results obtained with these techniques to different materials are

14



1. Introduction and objectives

presented.

Chapter 3 starts with a literature review of the numerical algorithms to generate

artificial microstructures. Afterwards, a new versatile approach based upon solving

fibers overlapping is presented for the generation of 2-D microstructures with arbi-

trary fiber shapes and sizes reaching high fiber volume fractions. The analysis of

some spatial descriptors was carried out over a number of artificial microstructures

to validate this new algorithm. Finally, an in-house developed user interface for the

generation and statistical analysis of 2-D microstructures is presented: Viper.

In Chapter 4, the effect of the fiber shape on the transverse tension and com-

pression strengths is analyzed by means of computational micromechanics (CMM).

For this purpose, periodic representative volume elements with different fiber cross

sections were virtually tested. The influence of the residual thermal stresses was

also addressed.

In Chapter 5, a numerical framework for the analysis of fracture processes within

quasi-brittle materials is presented. The strategy is applied to the characterization

of the intralaminar fracture process of a unidirectional FRP composite through a

CMM embedded cell model. The characteristic crack resistance curve (R-curve) of

the failure process is captured and homogenized into an equivalent cohesive law that

can be introduced in mesoscale constitutive models.

The fiber kinking failure mechanism is addressed in Chapter 6. A high fidelity

CMM model is developed to compare and validate a mesoscale continuum damage

mechanics (CDM) model developed by A.C. Bergan (NASA Langley Research Cen-

ter). The CMM model is exploited to assess the assumptions and simplifications of

the mesoscale model for fiber kinking.

The thesis concludes in Chapter 7 with an exposition of the main remarks drawn

through all of the previous chapters. The benefits and opportunities offered by the

bottom-up multiscale strategy are highlighted from the perspective of computational

micromechanics to analyze in detail phenomena based upon the constituents scale.

In this final chapter, a perspective on potential future research topics to be addressed

is presented.
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2Experimental techniques for
micromechanical
characterization

In this chapter, a brief review of the micromechanical experimental techniques de-

voted to the characterization of the microconstituents of FRPs is presented. After-

wards, a full experimental procedure for the longitudinal characterization of high

performance fibers is described in detail in Section 2.2. This procedure includes two

new experimental techniques, developed in this thesis, focused on the compressive

strength and fracture toughness characterization of fibers. A discussion on the cur-

rent state-of-the-art experimental techniques is drawn in Section 2.3 addressing the

main material properties that have not been characterized yet and its estimation to

be used in numerical models. The chapter concludes with Section 2.4 summarizing

the contributions of this thesis to the current state of the art and the potential

impact of the properties for which no experiments have been developed yet.

2.1 State of the art

In general, mechanical characterization of the FRP constituents, namely matrix,

interface and fibers, is a complex task due to their inherent small scale (Herráez et al.,

2017). Although, some mechanical properties may be inferred from macroscale tests,

like some of the elastic properties, micromechanical tests are required to evaluate

other properties like strength and toughness.

Some mechanical properties can be obtained from ex situ tests such as neat resin

coupons, or the fiber drop test (see Section 2.1.2). However, this approach may not
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be entirely representative of the actual properties within the real composite because

of differences in the manufacturing process, curing conditions and the initial residual

stress state. In view of this, a more representative solution relies on the use of in situ

micromechanical testing techniques in order to characterize the matrix, interface and

fibers within the as manufactured composite material.

2.1.1 Matrix characterization

As a first approximation, mechanical characterization of the elastic properties of

the isotropic polymeric matrix, Em and νm, and the tensile strength, σmt , may be

done through macroscale coupons of neat resin. Nevertheless, the most adequate

strategy to obtain the sophisticated elasto-plastic mechanical response of the matrix

consists of in situ microtesting. Along this section, the instrumented nanoindenta-

tion (Rodŕıguez et al., 2012b) and micropillar compression techniques (Naya, 2017)

are briefly explained for the sake of completeness. In addition, the mechanical prop-

erties of Hexcel 8552 epoxy resin obtained through experimental characterization

are gathered in Table 2.1.

Instrumented nanoindentation

Instrumented nanoindentation is an experimental technique that consists of pene-

trating the surface of a material, using a spherical, conical or pyramidal rigid inden-

ter, see Figure 2.1b. This methodology was originally developed by Tabor (1951)

who by measuring the applied load P and the contact area Ac, obtained the material

hardness as H = P/Ac. Nevertheless, estimation of the contact area is not trivial

from nanoindentation.

Although a methodology to estimate the contact area from the stiffness of the un-

loading curve was developed by Oliver and Pharr (1992), its application to frictional

materials, such as polymers, is not straightforward, due to the pile-up and sink-in

phenomena (Figure 2.1a) which mask the contact area predicted by this method.

This problem was analyzed in detail by Rodŕıguez et al. (2012b) to determine the

full constitutive behavior of several polymers and bulk metallic glasses.

Epoxy resins behave as frictional materials, which means they are brittle under

tensile loads, while in compression, they exhibit a pronounced plastic behavior. Since

the yield surface is dependent on the hydrostatic pressure, it can be modeled using

a Drucker-Prager yield criterion assuming isotropic elasto-plastic behavior (Drucker

and Prager, 1952). This constitutive law requires four mechanical properties to
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Figure 2.1: Experimental techniques for polymer matrix characterization: a)
schematics of instrumented nanoindentation technique illustrating the pile-up and
sink-in phenomena, b) atomic force microscope (AFM) image of a group of nanoin-
dentation footprints in a resin pocket (Naya, 2017), c) sketch of the matrix micropil-
lar compression test, d) scanning electron microscope (SEM) image of an FIB milled
resin micropillar (Herráez et al., 2017).

describe the constitutive response of the material: the elastic modulus (Em) and

Poisson’s ratio (νm) which characterize the elastic regime, and the cohesion (cm)

and the internal friction angle (φm) which determine the plastic yield surface.

The study carried out by Rodŕıguez et al. (2012b) through numerical finite ele-

ment (FE) models concluded that the analysis of the load-displacement indentation

curves alone cannot provide, independently, the information required to determine

all of the parameters that describe the constitutive behavior of the polymer when

pile-up/sink-in phenomena are present. This problem might be tackled carrying

out complementary tests to obtain one of the matrix properties independently. In
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Table 2.1: Mechanical properties of the 8552 epoxy resin obtained from in situ
micromechanical characterization through instrumented nanoindentation and mi-
cropillar compression tests (Rodŕıguez et al., 2012b; Naya et al., 2017a).

Em σmyc φm

[GPa] [MPa] [◦]

5.1± 0.3 176± 3 31± 1

this regard, a new micromechanical test, the resin micropillar compression, has been

recently proposed by Naya (2017) to measure the compressive yield strength of the

matrix, σmyc, independently, so the frictional behavior of the resin can be obtained

jointly with the methodology proposed by Rodŕıguez et al. (2012b).

Micropillar compression test

The aim of this experimental technique is to get a direct stress-strain curve of the

polymer under a uniaxial compression stress state. The main advantage of this

method with respect to an equivalent macroscopic test is that there is no need of

neat resin to manufacture ad hoc specimens. Micropillars are carved in situ on the

cross section of a unidirectional FRP ply sample using a Focused Ion Beam (FIB)

and then they are compressed using a flat punch tip indenter, as shown in Figure 2.1c

and d. However, the load-displacement curve obtained from the experiment needs

to be corrected to account for geometrical features of the carved pillar as the conical

shape tapered angle, and substrate compliance (Yang et al., 2009). In addition,

other issue of this test is the formation of a stiffer skin as a result of the FIB milling

process (Wang et al., 2012). The stiffening effect of the micropillar skin was also

corrected by Naya (2017) fabricating pillars of different diameters.

This technique provides a direct measurement of Em and σmyc from the stress-

strain curve. Both experimental techniques, micropillar compression and instru-

mented nanoindentation, were combined by Naya (2017) to fully characterize the

elasto-plastic constitutive behavior of the matrix. The compressive yield strength,

σmyc, obtained through the compression of resin micropillars was combined with the

nanoindentation loading curve to determine the internal friction angle, φm. Details

of the methodology were presented by Rodŕıguez et al. (2012b). The mechanical

properties obtained with this technique for the 8552 epoxy matrix are collected in

Table 2.1.
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2.1.2 Interface characterization

As it was mentioned previously, fiber/matrix interface characterization in FRPs re-

quires either the manufacturing of ad hoc coupons or the development of in situ

micromechanical tests. In the first group of techniques, the most popular one re-

ported in the literature are: the single-fiber fragmentation test, the fiber pull-out

test and the single compression test. On the second group, the most efficient in situ

micromechanical tests are the fiber push-in (Rodŕıguez et al., 2012a) and push-out

tests (Canal et al., 2012b).

Ad hoc micromechanical tests

Kelly and Tyson (1965) originally developed the fiber fragmentation test to charac-

terize the fiber/matrix interface shear strength, Sc, of a tungsten fiber embedded

in copper matrix. The fundamentals of this technique relay on the study of the

fragmentation process of a single fiber embedded in a dog-bone coupon made of the

polymer matrix when tested under uniaxial tension in the fiber direction, as shown

in Figure 2.2a. During the test, a longitudinal tensile stress in the fiber is devel-

oped. As load keeps increasing, progressive fragmentation events will take place

until all remaining loaded fiber segments are too short to sustain the tensile stress

transferred through shear stresses at the fiber/matrix interface (Herrera-Franco and

Drzal, 1992). Analytical models accounting for load transfer between the fiber and

the matrix are employed to derive the interface shear strength based upon the pro-

gressive fiber breakage process and the length of the fiber fragments (Cox, 1952).

However, some important drawbacks affect the accuracy of the predicted interface

strength. For instance, the matrix is assumed not to yield during the fiber fragmen-

tation test, such that the whole process is fully governed by the interface and fiber

failure (Bascom and Jensen, 1986). Another issue arises from the typically brittle

epoxy matrices employed in the FRP composites, which may not reach the strain

required to continuously break the fiber into small fragments.

The fiber pull-out test consists of a fiber partially embedded in a matrix block,

that is loaded under tension while the matrix block is fixed, see Figure 2.2b. The

force applied to the fiber is recorded during the test as well as the fiber end displace-

ment, so the shear stress along the fiber/matrix interface can be estimated using a

simple shear-lag model (Cox, 1952). More sophisticated FE micromechanical models

were also developed to improve the understanding of the physical mechanisms gov-

erning the fiber/matrix interface debonding during the fiber pull-out process (Beck-
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Figure 2.2: Schematics of ad hoc micromechanical tests to characterize the
fiber/matrix interface strength: a) single-fiber fragmentation test (Kelly and Tyson,
1965), b) pull-out test with fixed bottom configuration, c) microbond test (Miller
et al., 1987), and d) single compression test with smooth curvature (Broutman,
1969).

ert and Lauke, 1998). Nevertheless, there is an important practical difficulty from

the experimental point of view. For typical values of the interface shear strength, to

prevent fiber fracture the embedded pull-out length should be lower than ∼1 mm,

and, from the experimental point of view, this is difficult to achieve and control

(Kim et al., 1992).

The microbond test, also known as drop test, appeared as a modified version of

the fiber pull-out test to deal with some of the problems from the latter (Miller et al.,

1987). In this case, the fiber is pulled-out from a droplet of previously cured resin as

illustrated in Figure 2.2c. Although this method allows for testing small diameter

fibers, due to the reduced size of the droplets, it presents other disadvantages. The
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complex geometry of the droplet hinders the precise measurement of the embedded

fiber length, bringing out inaccurate strength values (Herrera-Franco and Drzal,

1992). In addition, matrix cracking is frequently triggered by the “loading jigs”

configuration prior to interface failure, and the manufacturing of specimens is hardly

controllable, so repeatability of the results is jeopardized.

The single compression test of a dog-bone shaped specimen with smooth cur-

vature was developed by Broutman (1969) to overcome the main limitation of the

experimental procedures described previously: complex stress states around the

fiber interface. This method is based on a single fiber embedded in a matrix speci-

men that is loaded under uniaxial compression, as shown in Figure 2.2d. Interface

debonding initiates from the region where shear stress is maximum. However, the

different elastic properties of the constituents induce a transverse tensile stress state

at the center plane of the coupon, while the shear stresses are close to zero due to

the symmetry (Ageorges et al., 1999). It was Schüller et al. (2000) who, by means

of numerical models, observed the stress state along the fiber interface is more com-

plex than expected. The analytical expressions derived by Broutman do not account

for the important influence of residual stresses, neck shape effect of the specimen

geometry and fiber anisotropy. Although, this technique became obsolete due to

the significant uncertainties in the prediction of the interface strength, it provided

important insights for further developments using analogous single fiber composites

(Kim and Mai, 1998).

In situ micromechanical tests

In this section, in situ micromechanical tests to measure the interface strength are

described in detail, namely the push-in and push-out tests. The main advantage of

this type of experimental techniques is that they account for the real constraining

effect of the surrounding fibers and the resin curing process is that of the actual

composite.

The push-in test makes use of specimens extracted from the as manufactured

composite and therefore, the resulting interface properties are more representative

of the final material (Marshall, 1984). In this test, a single fiber in a given cross-

section of a bulk specimen of the laminate is pushed in by means of a flat-punch

indenter until interface debonding takes place as it is shown in Figure 2.3a. The

main advantage of this technique relies, probably, on the sample preparation, which

only requires fine polishing of the composite lamina cross section. On the other
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hand, interpretation of the results is somehow difficult because the length of the

debonded interface is not measurable below the surface. In addition, fiber/matrix

friction is also present after debonding. Originally, all these issues were tackled by

means of analytical shear lag models (Cox, 1952; Kelly and Tyson, 1965; Mandell

et al., 1980). Nevertheless, analytical models often require crude simplifications, like

averaged regular fibers distribution or axial symmetry, which often lead to errors

in the determination of the interface strength. To avoid those problems, compu-

tational micromechanics was employed to correlate the experimental results with

FE virtual tests (Molina-Aldaregúıa et al., 2011; Rodŕıguez et al., 2012a). The se-

quence of events during fiber push-in is presented in Figure 2.3b: debonding onset

is observed at the beginning of the indentation process (i), as load increases inter-

face debonding keeps propagating stably (ii-iii), until the whole interface is fully

debonded throughout some fiber length (iv). The interface shear strength, Sc, can

be obtained by means of FE modeling from the load-displacement curves, and the

results for AS4/8552 are shown in Table 2.2.

The push-out test also allows for testing the interface of fibers embedded in a

composite manufactured by conventional techniques. The physical mechanism gov-

erning fiber push-out is similar to that of fiber push-in, but it is performed on a

thin slice of the composite cross section of a few fiber diameters in thickness. As

in the push-in test, the fiber is pushed with a flat-punch indenter while the load-

displacement curve is monitored. The slenderness of the specimen promotes full

interface debonding of the fiber pushed out through the plate, as represented in

Figure 2.3c and d. In this test, interpretation of the results is straightforward: the

interface shear strength is directly calculated from the peak load and the interface

surface. However, the complexity of the test is found on the sample preparation:

slicing/polishing of the sample down to such small thickness values (20− 30 µm) is

extremely difficult and time consuming due to the brittleness of the composite mate-

rial. Moreover, the slicing process may lead to significant relaxation of the residual

stresses that could modify the mechanical response of the fiber/matrix interface.

Nevertheless, these experimental techniques are only intended to obtain the in-

terface shear strength, Sc, whereas the normal interface strength, N c, which may

differ from the shear strength, cannot be obtained by any of the last two meth-

ods. As an approximation, in this work the interface normal strength was estimated

as N c = 2/3 · Sc, in accordance with experimental results on cruciform specimens

carried out by Ogihara and Koyanagi (2010), see Table 2.2.
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Figure 2.3: Schematics of in situ micromechanical tests to characterize the
fiber/matrix interface strength: a) push-in test, b) SEM view of a pushed-in E-
glass fiber at different load stages (Molina-Aldaregúıa et al., 2011), c) push-out test,
d) SEM view of the back side of a pushed-out E-glass fiber (Canal et al., 2012b).

Not only the normal interface strength, but, to the best knowledge of the authors,

there are also other mechanical properties of the interface that cannot be obtained

through in situ micromechanical testing like the interface fracture toughness in

mode I and II, namely Gc
n and Gc

s, and the friction coefficient, µc. For instance,

characterization of the interface fracture energy is crucial to develop representative

micromechanical models of the composite, see Section 5.4.1, but it is out of the

scope of the present thesis.

2.1.3 Fiber characterization

The role of fibers in a reinforced polymer composite is to provide stiffness and

strength to the material in the fiber direction. This is why the stacking sequence
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Table 2.2: Mechanical properties of fiber/matrix interface for AS4/8552 composite
from in situ micromechanical push-in tests (Rodŕıguez et al., 2012a; Naya et al.,
2017a). ∗N c is calculated based on Sc (Ogihara and Koyanagi, 2010).

N c Sc

[MPa] [MPa]

42∗ ± 2 63± 3

of a laminate includes plies with different fiber orientations, in a simple way, to

sustain loads in different directions according to a given design. For this reason

most of the fiber characterization techniques available in the literature are focused

on the longitudinal direction properties, mainly on the strength and stiffness. We

can divide fiber characterization into tensile and compressive loading due to the

enormous differences in the experimental testing strategies between both. Moreover,

glass fibers behave as isotropic solids due to their amorphous structure, while carbon

fibers are highly anisotropic due to the intrinsic microstructure of aligned graphene

platelets. Thus, carbon fibers are typically represented as transversely isotropic

solids.

Tensile loading

Numerous authors have measured the longitudinal properties under tensile loading

of reinforcement fibers like carbon, glass, aramid and natural fibers among others

from direct testing of filaments and/or tows. The longitudinal elastic modulus and

strength of fibers can be obtained by straining, up to failure, individual filaments

(single-fiber test, SFT) or tows containing thousands of fibers while monitoring the

load-displacement curve, according to ASTM C1557-14 (2014) and ASTM D4018-17

(2017) respectively. When testing a tow with thousands of fibers, the cross section of

fibers is estimated from the linear density of the tow. Nevertheless, in situ techniques

are available to measure the diameter of one fiber during SFT, like the frequency

method (ASTM D1577-07, 2012). In this manner the stress vs. strain curve of the

fiber under longitudinal tension can be obtained, from which the longitudinal elastic

modulus, Ef
1 , and the fiber tensile strength, Xf

t , are derived. It must be remarked

that some types of fibers, like carbon and aramid fibers, exhibit a nonlinear elastic

behavior under longitudinal loading: with an increasing tangent modulus under

tension and decreasing in compression (Peterson and Murphey, 2016; Le Goff et al.,
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2017). The experimental procedure for the characterization of the nonlinear elastic

response of fibers is described in Section 2.2.1.

Although the Young modulus can be assumed to be constant along the fiber,

fiber failure under longitudinal tension is dependent on the fiber length as it is

triggered by the most critical defect (Reynolds and Sharp, 1974). This phenomenon

is explained through the weakest link theory (Zweben and Rosen, 1970; Manders

and Chou, 1983; Hitchon and Phillips, 1979) and has been typically modeled using

the Weibull statistical distribution (Weibull, 1939). The Weibull cumulative density

function, F , is defined as,

F (σ, L;σ0,m, L0) = 1− exp

(
− L

L0

(
σ

σ0

)m)
(2.1)

where σ0 is the Weibull strength, m is the Weibull modulus which represents the

strength dispersion, and L0 is the gauge length of the specimens tested. This statis-

tical distribution considers the coupon length, L, to represent the size effect upon

the strength, σ.

Fiber strength dependency on the gauge length can be overcome by employing

a fracture mechanics approach, instead of a stress-based strategy if the popula-

tion of defects is known a priori. The application of a fracture mechanics criterion

assumes that fiber failure occurs at a defect/flaw which plays the role of a small pre-

crack. The variable defined for this criterion by the linear elastic fracture mechanics

(LEFM) is the stress intensity factor, KI, which is traditionally defined as,

KI(σ∞, a, geometry) = Y (a, geometry) · σ∞ ·
√
πa (2.2)

where σ∞ is the remote stress, a is the crack/notch length, ’geometry’ represents the

specimen geometry and boundary conditions, and Y is known as the non-dimensional

stress intensity factor. The material property that is required by this criterion is

the fracture toughness, KIC. Therefore, material failure happens when the stress

intensity factor at the crack tip, KI, induced by the remote loading, σ∞, reaches

the material fracture toughness, KI = KIC. Thus, to characterize this property,

specimens with a priori known crack/notch lengths are needed.

The recent development of high resolution milling techniques, like the Focus

Ion Beam (FIB), has enabled a whole new range of possible experiments from a

micromechanical perspective. This is the case of the single-fiber tensile test of
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notched fibers (Ogihara et al., 2009), which allows for the calculation of the mode

I fracture toughness of the fiber, Kf
IC. This technique has been successfully applied

to carbon (Kant and Penumadu, 2013; Tanaka et al., 2014) and other ceramic fibers

(Ochiai et al., 2010). The application of this technique to measure experimentally

the toughness of carbon, glass and aramid fibers is detailed in Section 2.2.3.

Compressive loading

A number of experimental techniques have been developed to measure the compres-

sive strength of carbon fibers as reported by Waas and Schultheisz (1996). Among

them we find i) the elastic loop test, ii) microcomposites testing, iii) the fiber recoil

method, iv) micro-beam bending, and v) direct fiber compression, as illustrated in

Figure 2.4.

In the elastica loop method (i) a fiber is bent into a loop, then the ends of the loop

are pulled until the fiber breaks by compressive kinking as shown in Figure 2.4a.

Although this method was originally developed by Sinclair (1950) as a mean for

determining the tensile strength of fibers, the compressive stress in the loop may

actually induce the failure of the fiber (Fukuda et al., 1999; López Jiménez and

Pellegrino, 2012).

Microcomposites testing (ii) is a popular strategy in the literature to perform ad

hoc microtests and extract mechanical properties at the constituents level. In gen-

eral, the samples are manufactured including a single fiber. For instance, Hawthorne

and Teghtsoonian (1975) carried out uniaxial compression tests on single-carbon

fiber epoxy composites, as sketched in Figure 2.4b. They found an inverse relation

between the elastic modulus and compressive strength for carbon fibers, as occurs

in longitudinal tension for rayon-based and polyacrionitrile-based (PAN) fibers.

The fiber recoil method (iii) was introduced by Allen (1987) for the measurement

of the compressive strength of polymer fibers. This technique consists of stretching

a fiber at a certain tensile stress and then cut it in the middle. The resulting elastic

wave from the cut travels to the fixed ends of the specimen and is reflected inducing a

compressive stress in the fiber direction, see Figure 2.4c. Nonetheless, this procedure

is prone to induce buckling along the fiber as large gauge lengths are required, and

interpretation of the test results is not direct.

The bending method (iv) includes different test configurations to induce compres-

sive stress in single fibers. DeTeresa (1985) employed a three-point bending setup,
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Figure 2.4: Experimental techniques to measure the fiber compressive strength: a)
elastica loop test, b) microcomposite compression, c) fiber recoil method, d) micro-
beam bending, and e) direct fiber compression.

as the schematic shown in Figure 2.4d, to induce a linear strain distribution along

the beam-fiber until the fiber was broken. A different scheme was adopted by other

authors selecting a four-point bending configuration with a single-fiber attached to
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the coupon face under compression (Ohsawa et al., 1990; Miwa et al., 1991).

Direct compression of single carbon fibers (v) was accomplished by Macturk

et al. (1991) fixing the fiber ends to the loading fixtures with epoxy resin, see Fig-

ure 2.4e. The most sensitive variable to obtain the fiber compressive strength with

this method is the fiber gauge length: if the fiber is too long it will buckle, while if

it is too small the stress field will not be homogeneous and will be affected by the

boundary conditions. Oya and Johnson (2001) performed a similar test to measure

the compressive strength of different types of carbon fibers and found an important

effect of the fixtures in the fiber failure.

Anisotropic behavior

Ceramic and polymer fibers exhibit a strong anisotropy due to their internal mor-

phology. That is why its stiffness in the transverse direction is much lower than

in the longitudinal direction, Ef
2 � Ef

1 . To the best knowledge of the author, the

only available technique in the literature to characterize the transverse modulus of

the fiber is the single-filament transversal compression test, (Hadley et al., 1965;

Phoenix and Skelton, 1974). However, determination of the transverse modulus of

the fiber from the load-displacement curve is inaccurate due to the uncertainty in the

variables involved in the process. The most extended strategy consists of reverse

engineering the fiber transverse elastic modulus from the transverse stiffness of a

unidirectional ply through analytical expressions based on homogenization theories

(Chamis, 1983; Mori and Tanaka, 1973) or computational micromechanics models

(Totry et al., 2008b).

Regarding the shear stiffness of fibers, an original experimental method was

reported by Tsai and Daniel (1999), in which a single-filament torsional pendulum

was employed to measure the torsional stiffness of the fiber and thus its longitudinal

shear modulus, Gf
12, based on the oscillation period.

2.2 New experimental techniques for fiber characterization

In this section, an experimental methodology for the longitudinal characterization of

high performance fibers is presented. This procedure was applied on the characteri-

zation of three common structural fibers used in composites manufacturing: i) AS4

(Hexcel, 2018a) is a high strength carbon fiber manufactured from PAN (Polyacry-

lonitrile) precursor commonly used in prepregs and dry fabrics for aerospace struc-
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tural applications; ii) aluminum-borosilicate E-glass fiber (54% SiO2 - 15% Al2O3 -

12% CaO) is arguably the most common reinforcement for composites because of

its low cost, high stiffness and strength, and the high temperature resistance; and

iii) Kevlar KM2 (poly-paraphenylene terephthalamide branded by Dupont) is an or-

ganic synthetic fiber of the aromatic polyamide family (aramid) with high strength,

modulus, and toughness used to develop protections against fragments impacts.

Firstly, the characterization of the elastic properties of the fibers is performed

by means of single-fiber tests (SFT) in Section 2.2.1. The nonlinear response of

carbon and aramid fibers is explicitly considered as well by means of an additional

parameter, cf .

Then, the experimental techniques employed for the characterization of the ten-

sile and compressive strengths are described in Section 2.2.2. The tensile strength,

Xf
t , is obtained by means of SFT and the experimental results are reduced through

the Weibull’s statistical distribution (see eq. 2.1), whereas the compressive strength,

Xf
c , is addressed by means of a novel technique consisting of the in situ compression

of fiber micropillars. The micropillar compression technique was only applied to

AS4 carbon fibers.

Finally, the effective fracture toughness of the fibers under mode I loading, Kf
IC,

is achieved by means of single-fiber tensile testing of notched fibers, see Section 2.2.3.

2.2.1 Characterization of the elastic behavior

Typically, structural fibers are assumed to behave as linear elastic solids for the sake

of simplicity. Nevertheless, some kinds of fibers, like carbon and aramid fibers, ex-

hibit some stiffening as tensile strain increases and this phenomenon can be captured

through SFT tests. Although, some models in the literature distinguish between ten-

sion and compression loading (Montagnier and Hochard, 2005), a simple analytical

model with a single parameter, cf , to represent the nonlinear elastic response of the

fibers was proposed by Kowalski (1988) as,

Ef
1 (ε11) = E0f

1 · (1 + cf ε11) (2.3)

where cf is the nonlinear parameter and E0f
1 is the elastic modulus of the fiber at

ε11 = 0. This nonlinear elastic response of the fibers is transferred to the mechanical

response of a unidirectional ply in the reinforcement direction through the rule of

mixtures as, cl ≈ Vf cf , assuming the matrix is linear elastic (Peterson and Murphey,
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Table 2.3: Longitudinal elastic properties of structural fibers for the linear and
nonlinear elastic models. ∗Glass fibers showed a perfectly linear elastic behavior.

Fiber Linear density Diameter Linear model Nonlinear model

λ [10−3 tex] d [µm] Ef
1 [GPa] E0f

1 [GPa] cf

AS4 carbon 69± 4 7.1± 0.2 231± 10 211± 9 18.7

E-glass 310± 20 12.4± 0.4 68± 2 -∗ -∗

Kevlar KM2 164± 11 11.8± 0.4 84± 3 75± 3 7.2

2016; Le Goff et al., 2017). Integrating eq. 2.3 under uniaxial tension, a quadratic

stress-strain relation is found in the longitudinal direction,

σ11(ε11) =

∫ ε11

0

Ef
1 (ε) · dε = E0f

1 ·
(
ε11 +

cf
2
ε2

11

)
(2.4)

where cf and E0f
1 can be extracted from least squares fitting of the stress-strain

curves obtained from SFT.

The characterization of the elastic response of the fibers under analysis (AS4

carbon, E-glass and Kevlar KM2) was carried out by means of the following ex-

perimental procedure. The fiber ends were bonded with cyanoacrylate adhesive on

cardboard with a 20 mm free-gauge length, with the embedded length being previ-

ously determined to eliminate sliding during the tests. The cardboard was directly

connected to the mechanical grips of the fiber tensile test apparatus (Favimat+,

TextechnoTM) and then subjected to uniaxial straining up to failure under stroke

control at 1 mm/min, leading to strain rates of the order of ∼ 10−3 s−1. The lin-

ear density of the fibers, λ, was determined by the fiber-tester system by using the

frequency method according to the ASTM D1577-07 (2012) standard. The fiber is

pre-loaded in this method to a given force in the range of 0.45 ∼ 0.70 cN/tex ([tex]

= [g/km]). Then, the natural frequencies are extracted to determine linear density

and, subsequently, the fiber cross section. The bulk density assumed for each of the

fiber types was ρ = 1750, 2570 and 1500 kg/m3 for the carbon, glass and aramid

fibers respectively. All the tests were carried out at room temperature. A minimum

of 30 fibers were dedicated to the elastic characterization of each type of fiber.

The resulting curves from the experimental SFT on AS4 carbon fibers are shown

as red lines in Figure 2.5, together with the linear and nonlinear models fittings.

Strain stiffening is observed under tension, while fiber stiffness reduction is predicted
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Figure 2.5: Stress vs. strain curves from SFT tests on AS4 carbon fibers (red lines),
nonlinear (green) and linear (black) least squares fitting. Extrapolation of the SFT
curves for the compression regime are shown (blue). Average strength values under
tension, Xf

t , and compression, Xf
c , are displayed (see Section 2.2.2).

by extrapolation of the tensile results in compression. If the mechanical response

of the fibers is assumed to be linear (black line), the stress prediction under tensile

loading will not fall into remarkable errors, but compressive stresses will be largely

overpredicted, specially for high compression strain values. The parameters obtained

from the least squares fitting of the curves are gathered in Table 2.3. Peterson and

Murphey (2016) reported experimental values of the same order for the nonlinear

parameter under tension of IM10 carbon fiber, cf = 23.6±1.2. Aramid fiber (Kevlar

KM2) exhibited some nonlinearity as well (cf = 7.2), whereas E-glass fiber described

a perfectly linear elastic behavior (cf ≈ 0).

2.2.2 Longitudinal strengths characterization

Longitudinal tensile strength, Xf
t

The longitudinal tensile strength of the fibers was obtained from the SFT tests

carried out up to failure as described in Section 2.2.1.

33



2.2. New experimental techniques for fiber characterization

0 2000 4000 6000
σ (MPa)

0.0

0.2

0.4

0.6

0.8

1.0

F

a)

5 6 7 8 9
lnσ

5

4

3

2

1

0

1

2

ln
( ln

1
1
−
F

) −
ln

L L
0

b)

AS4 carbon
E− glass

Kevlar KM2

Figure 2.6: Experimental characterization of the fiber tensile strength through
Weibull model: a) cumulative density function, F (eq. 2.1), and b) linear fitting
of Weibull parameters (σ0 and m).

The resulting tensile strengths, Xf
t , measured from 30 realizations of each type

of fiber are shown in Table 2.4. The population of strength values obtained experi-

mentally were fitted to a Weibull distribution according to eq. 2.1. The longitudinal

elastic modulus, Ef
1 , reported in Table 2.4 corresponds to a linear fitting of the SFT

stress vs. strain curves.

The strength was determined with the maximum load achieved during SFT.

The strength data σ of each group of fibers was arranged in ascending order and the

failure probability (i− 0.5)/N was assigned to each individual strength as shown in

Figure 2.6a, where i is the rank position and N the total number of fibers population.

According to the Weibull statistics, the cumulative fracture density function, F ,

eq. 2.1, can be rearranged as

ln

(
ln

1

1− F

)
− ln

L

L0

= m lnσ −m lnσ0 (2.5)

where the unknowns are the Weibull strength, σ0, and the Weibull modulus, m,

which were estimated by linear regression of eq. 2.5 as depicted in Figure 2.6b.
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Table 2.4: Weibull parameters of the fibers tested by fitting eq. 2.5. The reference
fiber length was L0 = 20 mm.

Fiber Weibull strength Weibull modulus

σ0 [GPa] m [-]

AS4 carbon 4.0 6.5

E-glass 1.9 4.1

Kevlar KM2 4.1 6.5

Longitudinal compressive strength, Xf
c

Longitudinal compressive strength of AS4 carbon fiber was measured through in situ

fiber micropillar compression tests. A FEI Helios NanoLab DualBeam 600i equipped

with a Focused Ion Beam (FIB) was used to manufacture micropillars at the center

of carbon fibers on the composite cross section (Figure 2.7a). Specimens of 1.5 µm

in diameter (dp) and 3 µm in height (hp) were fabricated using annular milling which

resulted into pillars with a taper angle lower than 3◦ (θp) as shown schematically

in Figure 2.8a. Beam currents were selected in order to produce suitable pillar

geometries while keeping reasonable milling times, starting with an initial electric

current of I = 0.79 nA down to I = 80 pA for the last milling step.

Samples were then mounted on a special holder for easy transfer between the

FIB and the nanoindenter instrument. Compression tests were conducted using a

Hysitron TI 950 TriboIndenter equipped with a 10 µm diameter flat punch. The

experiments were carried out under displacement control at a constant displacement

rate of u̇ = 12 nm/s. Considering the height of the pillars was around 3 µm,

the tests speed guarantees quasi-static conditions (ε̇ ≈ 10−3 s−1). A total of 13

fiber pillars were milled along the composite cross section and tested. Evidence of

implantation of Ga+ ions on the micropillar skin was not observed in this case, as

compared to the FIB-milled micropillars on epoxy resin (Naya, 2017). The typical

stress vs. displacement curves obtained during the compression tests are plotted

in Figure 2.8b. All curves present the same features, identifying three different

regions. The initial nonlinear region corresponds to the contact stage between the

indenter tip and the top face of the pillar, followed by a linear region during elastic

deformation of the fiber pillar and the surrounding material. This second stage turns

into a smooth softening of the load promoted by fiber pillar splitting that eventually

collapses, see Figure 2.7d and e. The compressive strength of pillars was obtained
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2.2. New experimental techniques for fiber characterization

Figure 2.7: a) View of two pillars, A and B, FIB-milled on carbon fibers on the cross
section of a CFRP before compression, b) premortem close view of pillar A, and c)
pillar B, d) postmortem view of pillar A, and e) pillar B.

based on the loss of linearity of the loading curve from the second to the third stage.

The resulting average compressive strength of AS4 carbon fibers was 3.5 GPa with

a standard deviation of 0.2 GPa.

2.2.3 Fiber toughness characterization

The most common methodology to estimate the toughness of small diameter fibers

is based on the direct observation of the fracture surfaces of post mortem specimens.

The fracture surface of the fibers often exhibits some remains, in the form of mirror,

mist and hackle textures, that allow to determine the defect size producing the

failure, and consequently, the fracture toughness estimation (Honjo, 2003). However,

this methodology introduces large experimental scatter due to the uncertainty in
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Figure 2.8: a) Schematics of the pillar compression test and b) stress-displacement
curves obtained from AS4 carbon fibers micropillars compression on the composite
cross section, where red crosses denote initial fiber failure.

the determination of the exact defect size that caused the final failure during the

experiment.

Focus Ion Beam (FIB) opens revolutionary opportunities for testing materials

at the microscale by selective removing/carving material generating complex ge-

ometries adequate for testing (Mueller et al., 2015; Slusarksi et al., 2014). Almost

all materials can be structured by FIB, ranging from soft matter (polymers) to ul-

tra hard material (diamond). This methodology permits to control precisely the

geometry of the notch in terms of its depth and tip radius. The mode I fracture

toughness, Kf
IC, is then inferred from the maximum strength of the notched fibers

and the geometry of the notch.

This technique was applied to obtain the fracture toughness of the three fiber

types previously tested for longitudinal elastic and tensile strength characterization,

namely AS4 carbon, E-glass and aramid KM2.

Fiber toughness was determined through dedicated tensile testing notched fibers.

The fibers were first extracted carefully with mechanical tweezers from tows previ-

ously separated from the woven fabrics for the three cases analyzed. Special care

was taken to avoid damage while handling and mounting fibers for testing.

The fibers were first mounted on a cardboard, ensuring the edges were care-

fully connected to a metal holder by using copper tape to provide the appropriate

electrical paths required during the fiber-milling operation. A FEI Helios NanoLab
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Table 2.5: Residual strength and toughness of the fibers analyzed

Fiber a0/d σ∞ Gf
IC Kf

IC lp/d

[%] [GPa] [J/m2] [MPa m1/2] [%]

AS4 carbon 12± 3 1.3± 0.3 50± 20 2.1± 0.4 0.95

E-glass 11± 2 0.5± 0.1 4± 1 1.08± 0.14 1.3

Kevlar KM2 10± 3 3.2± 0.4 1100± 200 6.6± 0.6 8.1

DualBeam 600i system equipped with an FIB was used to introduce the artificial

notches in the fibers that acted as fracture initiators during the tensile test. Ga+

ions were accelerated in the FIB system by using 30 kV of potential, with the beam

current being adjusted to 80 pA for the carbon fibers and 24 µA for the aramid and

glass, respectively. The selection of the appropriate beam current was carried out

to avoid microstructural changes due to ion impingement during milling operations.

Straight and sharp notches perpendicular to the fiber axis (a straight-fronted edge

crack) were introduced in the three structural fibers analyzed with a depth, a0, to

diameter, d, ratio of approximately a0/d ≈ 0.1, see Figure 2.9a. The notch radius

at the tip resulting from the FIB milling process was approximately ∼ 50 nm. The

fibers were submitted to an uniaxial tensile test up to failure by using the experi-

mental setup previously described. After the tensile tests, the fracture surface was

observed by scanning electron microscopy (SEM) to confirm the fracture location

and check the quality of the notch, as shown in Figure 2.9b. The surface texture

agrees with the brittle fracture behavior, and the fracture process starting from the

FIB-milled crack tip.

The residual strength of the notched fiber, σ∞, was determined from the failure

load and the fiber cross section, Table 2.5. A preliminary comparison of the effect of

the notch on the strength of the fiber suggests a higher defect sensitivity in carbon

and glass fibers with respect to aramid ones which can be interpreted as a lower

material toughness for the first ones.

The toughness of the fibers was evaluated from their residual strength and notch

size, based on the Linear Elastic Fracture Mechanics (LEFM) postulates. Conse-

quently, it was assumed that, neither the small crack tip radius (≈ 50 nm) nor the

possible material modification induced during Focus Ion Beam milling operations

excessively affected the fracture behavior of the fiber and, thus, the result can be

considered a good approximation of an intrinsic material property. Under the LEFM
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Figure 2.9: a) Longitudinal view of an AS4 carbon fiber after the introduction of a
straight notch perpendicular to the axis, b) fracture surface of a notched AS4 carbon
fiber after tensile test, and c) detail of the fracture surface texture.

premises, the cracked fiber is stable under specific loading conditions if the stress

intensity of the singular stress field around the crack tip (stress intensity factor, KI)

is below a given material property known as fracture toughness in normal opening

mode I, Kf
IC. As a result, the failure of the fiber is dictated by

KI(a, a/d, σ) = Y (a/d) · σ∞ ·
√
πa = KIC (2.6)

where KI stands for the stress intensity factor that is determined from the spec-

imen geometry, the crack depth, a, and the far field stress applied, σ∞. The factor

Y (a/d) is also known as non-dimensional stress intensity factor or shape factor.

Although analytical estimations are found in the literature of the non-dimensional

stress intensity factor for linear elastic isotropic solids with a straight-fronted edge

crack introduced in a cylinder subjected to uniaxial tension along its axis (Guinea

et al., 2004; Toribio et al., 2009), it was decided to determine it numerically using the

finite element method because carbon and aramid fibers show a strong anisotropy.
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The geometry of the specimen is plotted in Figure 2.10a. A planar straight-fronted

crack of depth a0 is set perpendicular to the loading axis of the fiber of diameter

d. For simplicity, only a quarter of the fiber was analyzed thanks to the symmetry

of the problem as it is shown in Figure 2.10b. The fiber length, L = 5d, was large

enough to assume far field loading conditions at the boundaries where a uniform ax-

ial stress is imposed without displacements and rotations constraints at the edges.

The relative crack to diameter ratio was varied in the range of 0 < a0/d ≤ 0.2

according to the experimental results aforementioned. As commented previously,

both carbon and aramid fibers exhibit a strong anisotropic behavior, mainly due to

their microstructure and chains orientation, while the amorphous structure of the

glass can be considered elastic isotropic. Carbon and aramid fibers were assumed to

behave as transversely isotropic solids, with the directions 2−3 defining the isotropy

plane and 1 the fiber direction (Cheng et al., 2005; Bencomo-Cisneros et al., 2012).

The elastic properties used in the simulation are summarized in Table 2.6. In all

cases, the fibers were considered homogeneous and, hence, the spatial changes in

the properties within the fibers due to their own microstructure are not accounted

for (sheath/core structure, for instance).

The particular symmetry boundary conditions used to simulate a state of uniaxial

tension for the cracked fiber were u3 = 0 on x3 = 0 and u1 = 0 on the crack plane

x1 = 0 and x2 > 0 (see Figure 2.10a). In addition, a uniform normal traction stress,

σ, was imposed on the upper face of the fiber, at x1 = L. The geometry of the

fiber was first partitioned using a cylinder following the crack tip direction in order

to enrich the discretization around the crack tip and capture adequately the large

stress gradients in this region, Figure 2.10c. Swept and structured meshes were

used, respectively, to discretize the cylindrical region and the remaining volume of

the fiber using 8-node isoparametric brick elements in Abaqus/Standard (Simulia,

2013). A mesh sensitivity analysis was performed obtaining an error below 0.5%

in the J-integral calculation. The final discretization consisted of 160,000 nodes, as

illustrated in Figure 2.10b. Simulations were carried out using Abaqus/Standard

within the framework of the small deformations theory (Simulia, 2013).

The evaluation of toughness for the given configuration was carried out based

on the J-integral which is the standard approach to characterize the energy release

rate associated with a potential crack growth in Linear Elastic Fracture Mechanics

(J = G in perfectly brittle materials). In such case, the energy release rate, J , is

obtained by numerical integration along the contour Γ (Figure 2.10a) according to
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b)a)

c)

1/4	model

Figure 2.10: a) Geometrical model of the notched fiber and detail of the Γ contour
for the J-integral evaluation, b) close view of the finite-element mesh around the
crack tip region, and c) global finite-element mesh of the 1/4 model.

J =

∫
Γ

(
Wdx2 − ~t ·

δ~u

δx1

ds

)
(2.7)

where W is the elastic strain energy density and ~t and ~u are the traction and

displacement vectors along the contour Γ. Even though the energy release rate is

path independent, several concentric contours surrounding the crack tip are used

because of the numerical nature of the finite element solution. In addition, J-

integral values are not constant along the crack length and the finite element model

is focused on the maximum value which is attained at the symmetry plane (point A in
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Table 2.6: Elastic properties used in the simulation of the fibers: AS4 carbon
(Herráez et al., 2015), E-glass and Kevlar KM2 (Cheng et al., 2005).

Fiber E1 E2 = E3 ν12 = ν13 ν23 G12 = G13 G23

[GPa] [GPa] [GPa] [GPa]

AS4 carbon 231 13 0.3 0.46 11.3 4.45

E-glass 68 68 0.3 0.3 26.1 26.1

Kevlar KM2 84 1.34 0.6 0.24 24.4 0.54

Figure 2.10a and 2.11c). The stress intensity factor, KI , at point A was determined

from the J-integral using the following Irwin’s like relation for anisotropic solids

derived by Sih et al. (1965).

J =

√√√√(S11S22

2

)(√
S11

S22

+
2S12 + S66

2S22

)
K2
I (2.8)

where KI stands for the stress intensity factor in mode I and Sij stand for the

compliance tensor components of the anisotropic solid under plane strain conditions:

S11 =
1− ν12ν21

E1

(2.9a)

S22 =
1− ν21ν12

E2

(2.9b)

S12 = −ν12 · (1− ν23)

E1

(2.9c)

S66 =
1

G12

(2.9d)

This expression yields the traditional Irwin’s relation for isotropic solids J =

K2/E∗, where E∗ is the effective elastic modulus under plane strain E∗ = E/(1 −
ν2). The non-dimensional stress intensity factor, Y (a/d), is plotted in Figure 2.11a

for the three structural fibers analyzed in this work using the elastic constants

shown in Table 2.6. The values of the fiber toughness for the given initial notch

depth were determined using the corresponding non-dimensional stress intensity

factors determined with the FE model and the residual strength of the fibers and are

summarized in Table 2.5. The lowest toughness values were obtained for the E-glass

fibers, Kf
IC = 1.08 MPa m1/2, and were similar to those reported in the literature
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Figure 2.11: a) Non-dimensional stress intensity factors (Y ) for a straight-fronted
crack for three types of fibers, b) fracture toughness vs. relative notch size, and
c) typical stress intensity factor (green) profile along a chordal notch. Note the
maximum stress intensity factor occurs at the midpoint, A.

(Wallenberger et al., 2001), and slightly higher than soda lime glass tested by nano-

indentation (Gong et al., 2001). High strength Toray T700 FIB notched carbon fibers

were tested by Kant and Penumadu (2013) and the results obtained, 1.73 MPa m1/2,

were similar to those reported here for AS4 carbon fiber (2.1 MPa m1/2), while Naito

et al. (2008) determined slightly lower values of the order of 1.1 MPa m1/2 for other

PAN-based carbon fibers (high strength T800G and high modulus M30S, M40S and

M50S), although the authors employed an expression for the non-dimensional factor

intended for isotropic solids developed by Astiz (1986).

The results of the fracture toughness of the three fibers are plotted in Fig-

ure 2.11b, as a function of the relative notch size, to determine whether the in-
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ternal structure of the fibers may affect its toughness. The calculated values of

fiber toughness were almost insensitive to the notch depths for the values employed

in the tests. These results are not surprising for the case of amorphous structures

as in E-glass fibers, but may take place in highly anisotropic fibers as aramid and

carbon which could exhibit sheath/core structures resulting from the manufactur-

ing process. In any case, the notches introduced in the fibers in this work exceed

this initial skin effect and the toughness obtained can be considered a homogeneous

property corresponding to the central core of the fiber. This effect has been reported

by other authors, like Kant and Penumadu (2013), suggesting a skin thickness in

high strength T700 carbon fibers of the order of ∼ 0.3 µm which is smaller than the

average notch depth used in this study (a0 ≈ 0.9 µm).

The morphology of the fracture surface analyzed after fiber testing reveals the

nature of the dissipation mechanisms for each fiber. The size of the damaged/plastic

process zone ahead of the notch tip, lp, can be estimated according to the well known

Irwin relation as

lp =
1

π

(
KIC

σ0

)2

(2.10)

where KIC stands for the fracture toughness shown in Table 2.5, and σ0 is the average

tensile strength of the Weibull distribution, Table 2.4. This estimation indicates

whether or not the notched fiber strength is dictated by the stress singularity at the

crack tip given by the linear elastic fracture mechanics. All the results are gathered

in Table 2.5.

Not surprisingly, the plastic radius, lp, was well below the fiber diameter, d, being

the ratio lp/d ≈ 1.3 and 0.95% for the AS4 carbon and E-glass fibers, respectively,

indicating essentially brittle behavior of both kind of fibers. In the case of E-glass

fibers, the amorphous structure promotes the crack propagation through a single

mirror-like cleavage plane as it is observed in Figure 2.12a, dissipating the smallest

amount of energy per surface unit corresponding to a brittle fracture. The fracture

surface of the AS4 carbon fibers was also flat although a smooth granular texture

was observed and illustrates fairly well that the crack propagation origin is found at

the midpoint of the artificial notch, as demonstrated in the numerical simulations

required for the calculation of the non-dimensional stress intensity factor, see Fig-

ure 2.11c. This morphology is typical of PAN-based carbon fibers as was noticed by

other authors (Kant and Penumadu, 2013; Ogihara et al., 2009).
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a) b)

Figure 2.12: Post-mortem SEM micrographs of the fracture surface of notched fibers:
a) E-glass and b) Kevlar KM2.

a) b)

Figure 2.13: a) Coil-shaped Kevlar-KM2 fiber after fracture, and b) sketch of fibril
sliding mechanisms of an aramid fiber.

The plastic zone radius of the Kevlar KM2 fibers inferred from eq. 2.10 was

lp/d ≈ 8.1% which is significantly higher than the two previous fiber types stud-

ied. In this case, the residual strength of the notched fibers was not significantly

affected by the presence of the defect introduced suggesting other nonlinear en-

ergy dissipation mechanisms (3.2 and 3.8 GPa for notched and unnotched strength,

respectively). This notch insensitivity behavior can be attributed to the fibril struc-

ture allowing sliding mechanisms in the fiber direction that can produce in turn

a homogenization of the stress field around the notch (Bencomo-Cisneros et al.,

2012; Panar et al., 1983). It follows that individual fibrils bundles of aramid fiber

are loaded almost homogeneously and independently of the presence of the notch
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resulting in a less sensitive behavior of the fiber, Figure 2.13b. As a result, Kevlar-

KM2 fibers presented the highest toughness compared to carbon and glass fibers.

This phenomenon is better understood observing the fractured region of these fibers

shown in Figure 2.12b. In this case, the fracture process involves energy dissipation

through a larger volume of fiber, not only a planar fracture surface, in the form

of plastic deformation and damage around the fractured region (fibrils breakage-

slippage, Figure 2.13b). The fiber takes a coiled shape after breakage that can be

explained by means of the elastic shock wave generated with the fracture process,

similar to a recoil test (see Section 2.1.3). This shock wave subjects the fiber to

a high stress level reaching large plastic deformations and permanent bending, see

Figure 2.13a.

The work presented in this section was published in Herráez et al. (2016a).

2.3 Discussion

This section presents a summary of the properties defining the mechanical behavior

of the FRP constituents measured through experimental characterization, obtained

from the literature or estimated based on the authors experience.

A summary of the mechanical properties of the microconstituents of a carbon

fiber reinforced polymer (CFRP) is presented in Tables 2.7, 2.8 and 2.9. As noted,

there are still properties that need to be derived from the literature or estimated.

Table 2.7: Summary of the mechanical properties characterization of the 8552 epoxy
polymer matrix.

Property Characterization Value

Em, elastic modulus Instrumented
nanoindentation,
Section 2.1.1

5.1± 0.3 GPa

φm, internal friction angle Instrumented
nanoindentation,
Section 2.1.1

31± 1◦

σmyc, compression yield point Micropillar compression,
Section 2.1.1

176± 3 MPa

σmt , tensile strength Literature (Hexcel, 2013) 120 MPa

Gm
t , tensile fracture energy Literature (Hexcel, 2013) 90 J/m2
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Table 2.8: Summary of the mechanical properties characterization of the
fiber/matrix interface of AS4/8552 composite.

Property Characterization Value

N c, normal strength Assumed as in Ogihara et al.
(2009)

42± 2 MPa

Sc, shear strength Fiber push-in and push-out
tests, Section 2.1.2

63± 3 MPa

Gc
n, mode I fracture energy Estimated 2 J/m2

Gc
s, mode II fracture energy Estimated 30 J/m2

µc, friction coefficient Estimated 0.2 - 0.4

Regarding the matrix behavior (Table 2.7), during the last years a strong ef-

fort has been carried out in the Composite Materials Group at IMDEA Materials

to perform a fine characterization of the polymer matrix at the microlevel through

instrumented nanoindentation first (Rodŕıguez et al., 2012b) and later by resin mi-

cropillar compression (Naya, 2017). On the other hand, tensile properties of the

epoxy resin can be obtained from the manufacturer data sheet (Hexcel, 2013). How-

ever, micromechanical in situ tests to characterize the tensile strength and associated

fracture energy have not been developed yet. For more details on the constitutive

model and mechanical properties employed for the epoxy matrix along the following

chapters the reader is referred to Section 4.2.2.

Fiber/matrix interface is probably the most difficult constituent to characterize

(Table 2.8). Essentially, we cannot refer to it as a ”material”, but a mechanical in-

teraction between two phases. Therefore, its experimental characterization requires

the development of in situ microtests. As a simplification, traction-separation laws

under normal and shear stresses are assumed (see Section 4.2.2 for more details).

Thus, the strength and fracture energies under both failure modes are needed. The

interface shear strength, Sc, can be measured through fiber push-out (Canal et al.,

2012b) and push-in tests (Rodŕıguez et al., 2012a), as explained in Section 2.1.2.

Nonetheless, no experimental setup has been developed yet to obtain the interface

normal strength, N c. So far, it is estimated as N c = 2/3 · Sc based on Ogihara and

Koyanagi (2010). Finally, a robust experimental methodology to get either of the

two fracture energies (mode I, Gc
n, and mode II, Gc

s) is not available in the literature,

so they need to be estimated as explained in Section 4.2.2. The value for the friction
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Table 2.9: Summary of the mechanical properties characterization of AS4 carbon
fiber. Longitudinal elastic modulus values, Ef

1 , are shown for the linear and nonlin-
ear models.

Property Characterization Value

Ef
1 , long. modulus (linear) Single-fiber test,

Section 2.1.3
231± 10 GPa (cf = 0)

Ef
1 , long. modulus (nonlinear) Single-fiber test,

Section 2.1.3
211± 9 GPa (cf = 18.7)

Ef
2 , transv. modulus Estimated 12.9 GPa

Gf
12, long. shear modulus Torsional

pendulum test
(Tsai and
Daniel, 1999)

11.3± 0.7 GPa

νf12, long. Poisson ratio Estimated 0.3

νf23, transv. Poisson ratio Estimated 0.46

Xf
t , long. tens. strength Single-fiber test,

Section 2.1.3
4000± 900 MPa

Xf
c , long. comp. strength Fiber micropillar

compression,
Section 2.2.2

3500± 200 MPa

Gf
t , long. tens. fract. energy Notched-fiber

test,
Section 2.2.3

50± 20 J/m2

Gf
c , long. comp. fract. energy Estimated 500 J/m2

coefficient, µc, is also estimated based upon Naya et al. (2017a).

The anisotropic structure of carbon fibers is an additional complexity for their

characterization. The mechanical properties in the longitudinal direction are very

different to those in the transverse direction. As a simplification, it is commonly

assumed that carbon fibers behave as elastic transversely isotropic solids, see Ta-

ble 2.9. On the one hand, longitudinal characterization of the fiber under tensile

loads is a well known field due to their fundamental role as reinforcement within the

composite material, either by means of tows containing thousands of filaments or

single-fiber tests (SFT), as reported in Section 2.1.3. Longitudinal characterization

of fibers was revisited in Section 2.2.3 to consider and measure the nonlinear stiffen-

ing of AS4 carbon fiber. Regarding the fracture characterization under longitudinal
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tensile loads, in this work, a recently developed experimental technique based upon

the SFT of a notched fiber is applied not only to carbon fibers, but also to glass and

aramid fibers. On the other hand, transverse characterization of fibers is an elusive

topic due to the difficulty associated to the microscopic scale fibers. Typically, the

transverse elastic modulus of the fibers, Ef
2 , is estimated by reverse engineering of

the ply transverse modulus. Whereas, the longitudinal shear modulus, Gf
12, can be

readily derived from the single-filament torsional pendulum test (Tsai and Daniel,

1999). The Poisson coefficients are estimated as well assuming transverse incom-

pressibility of the fiber, νf23 ≈ 0.5, and a typical value of 0.3 for the longitudinal

Poisson ratio, νf12. The internal morphology of carbon fibers is also responsible for

its different mechanical response under compressive and tensile loading. While ten-

sile strength is directly obtained from single-filament tensile tests, the longitudinal

compressive strength of the fibers is usually measured through indirect techniques.

A new methodology is proposed in this thesis to obtain this property by means of

fiber micropillar compression, see Section 2.2.2.

2.4 Concluding remarks

A review of the state of the art on the characterization of FRP constituents has

been presented in this chapter (matrix, interface and fiber). In addition, some novel

experimental techniques devoted to the longitudinal characterization of fibers have

been proposed.

The goal of the experimental characterization of the microconstituents is to apply

a bottom-up multiscale strategy to predict and infer the mechanical behavior of the

material not only at the microscale, but also at the meso and macroscales by means

of numerical models and homogenization theories.

For this reason, during the last years, the Composite Materials Group at IMDEA

Materials has focused its work towards the in situ characterization of FRP con-

stituents (Rodŕıguez et al., 2012a,b; Canal et al., 2012b; Naya, 2017). This thesis is

embedded within this research line and aims at developing experimental techniques

for the mechanical characterization of high performance fibers. In this regard, single-

fiber tensile tests were carried out on FIB-notched fibers to obtain their effective

tensile fracture toughness, Gf
t , while unnotched specimens were dedicated to char-

acterize the nonlinear elastic response of the fiber in the longitudinal direction, E0f
1

and cf . Besides, micropillars were FIB-milled on the cross section of fibers in a ply
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to directly measure their compressive strength, Xf
c , by uniaxial compression with

a flat-punch indenter. The influence of these properties, fiber elastic nonlinearity

and compressive strength, on the fiber kinking mechanism will be interrogated in

Chapter 6. However, there are still some gaps in terms of constituent properties

characterization.

Firstly, the characterization of the matrix under tensile loads needs to be done

at the microscale, as it plays a fundamental role on the transverse properties of the

composite ply through the matrix ligaments generated between debonded fibers.

Understanding the failure mechanisms of the polymer matrix at the microlevel,

together with defects distribution, is critical to improve the virtual predictions in

terms of fracture behavior and ply toughness. For instance, assuming a fracture

energy value (≈ 100 J/m2) and uniaxial tensile strength (≈ 100 MPa) obtained

from coupon level tests in a computational micromechanics model whose elements

size is around 1 µm leads to a strain to failure in the order of 200%. Thus, an in situ

measurement of these properties is required to assess the validity of the macroscopic

quantities at different spatial scales as Naya (2017) did with the compressive yield

limit.

Secondly, fiber/matrix interface properties stand as the most elusive to be mea-

sured. To the best knowledge of the author, in the present there are only reliable in

situ experimental techniques to obtain the shear strength, Sc. Characterization of

the fracture energy under modes I and II, and the friction coefficient of the interface

stand out as important gaps in knowledge. For instance, interface toughness plays

a main role on the intralaminar and interlaminar toughness of the composite col-

laborating with the fiber bridging mechanism. Another example is the translaminar

fracture toughness of a unidirectional FRP, which is very affected by the interface

friction µc and fracture energy in mode II, Gc
s, during the process of fiber pull out

(Bullegas et al., 2016).

In third place, classically only longitudinal failure of the fibers is considered in

numerical models. Nevertheless, under some circumstances shear stresses contribute

to fiber failure, as it is evidenced during the propagation of a kink band across

a unidirectional FRP ply. New experimental techniques need to be developed to

introduce, in a controlled manner, a measurable shear stress field along a fiber up

to failure. This new technique might be based upon the torsional pendulum test

proposed by Tsai and Daniel (1999) for the elastic shear modulus characterization.
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3.1 Introduction

One of the main features required by the computational micromechanics (CMM)

strategy is the artificial generation of representative microstructures. In the case of

unidirectional (UD) fiber-reinforced composites, the microstructure corresponds to

the fibers cross section distribution. An example of the cross section of an AS4/8552

composite system is shown in Figure 3.1. Typically, aeronautic-grade fiber-reinforced

composites contain a very high fiber volume fraction (Vf ≈ 60 ∼ 70%). However,

the numerical generation of microstructures with such high volume fraction is not

trivial and has been extensively studied in the literature with circular fibers.

In this chapter, the generation of 2-D microstructures representing the cross sec-

tion of a fiber-reinforced composite is addressed. The chapter starts with a review of

the state of the art on microstructures generation. Secondly, a novel methodology to

efficiently generate microstructures with high fiber volume fraction of non-circular

fibers is presented. Then, the methodology is employed to generate a variety of mi-

crostructures with a high volume fraction (Vf = 65%) of non-conventional fibers, ac-

companied by its statistical spatial analysis. Finally, an in-house developed software

package dedicated to the generation of microstructures called Viper is presented.



3.2. State of the art

Figure 3.1: Cross section micrograph of a unidirectional AS4/8552 composite ply
with Vf ≈ 68%.

3.2 State of the art

Artificial generation of microstructures has been a very demanding topic since the

beginnings of computational micromechanics. A wide variety of algorithms to gen-

erate microstructures of circular fibers can be found in the literature. The simplest

ones are based on the random sequential adsorption algorithm (RSA) (Rintoul and

Torquato, 1997), also known as hard-core model (HCM), which lies in the sequential

insertion of fibers into the RVE at arbitrary positions such that they do not overlap

each other until the desired fiber volume fraction, Vf , is reached. However, this

algorithm presents a jamming limit1 around Vf = 55% (Feder, 1980; Tory et al.,

1983; Buryachenko et al., 2003). To overcome this issue, similar strategies based on

the RSA algorithm are found in the literature (Oh et al., 2006). Based on other sta-

tistical descriptors like the radial distribution function, g(r), Bulsara et al. (1999)

proposed a RSA-like methodology, but the resulting microstructure was circular,

an important inconvenient for its practical application to representative load cases.

Böhm (1998) and Segurado and Llorca (2002) modified the RSA strategy to generate

3-D periodic cubic cells of spherical particles with a 50% volume fraction. This is an

important achievement as the jamming limit for homogeneous 3-D spheres assem-

1Maximum volume fraction of tightly packed homogeneous hard particles.
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blies through the traditional RSA approach is around 30%. The strategy followed

consists of compacting the particles towards a certain point while the RVE size is

reduced. This approach was translated into 2-D periodic microstructures of circular

fibers going up to Vf = 65% (Herráez et al., 2015). Other authors like Trias (2005)

considered the fibers arrangement as a complete spatial random (CSR) pattern of a

Poisson distribution avoiding the periodicity requirement. This approach was im-

proved by Melro et al. (2008) by applying an intermediate step stirring the fibers

to generate matrix rich regions where more fibers could fit resulting in volume frac-

tions as high as 65% including the periodicity constraint. Vaughan and McCarthy

(2010) were able to achieve 60% fiber volume fractions by adding fibers sequentially

according to the first and second nearest neighbor distance distributions obtained

from the analysis of micrographs from real microstructures. A similar approach was

followed by Yang et al. (2013).

This topic has been addressed within other disciplines like those regarding gran-

ular materials such as soils, food grains or pharmaceutical powders. A triangulation-

based strategy was developed by Cui and O’Sullivan (2003) to reach a high volume

fraction. Nevertheless, particles size is hardly controllable with this technique.

Another approach followed in the literature to achieve even higher fiber vol-

ume fractions consists of initially considering a regular periodic pattern of particles

(square or hexagonal) and progressively apply random displacements to the fibers

(Gusev et al., 2000; Wongsto and Li, 2005; Catalanotti, 2016). The hexagonal

packaging of circular fibers reaches the maximum possible fiber volume fraction at

Vf ≈ 90%. However, the representativeness of the microstructures obtained through

this methods is limited to circular fibers.

A different strategy, based on molecular dynamics, was implemented by Ghos-

sein and Lévesque (2012). A fixed number of particles of zero volume are initially

placed in the domain, each having a random velocity vector. The particles are then

put in motion and their size increases with a given growth rate. Particle-particle

and particle-face collisions are solved as elastic collisions during the analysis. The

algorithm finishes when the particles volume fraction reaches a target value.

Recently, Pathan et al. (2017) made use of a different approach based on the

minimization of a potential which is a function of the fibers overlapping. The pro-

cedure starts randomly placing the total number of fibers into the microstructure

domain, regardless of fiber overlapping. Then, a potential is computed based on the

fibers overlapping, iteratively the fibers are displaced reducing the extension of the
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overlapping area. These iterations are repeated until the potential is null, i.e. no

fibers are overlapping and the resulting microstructure is valid.

One of the problems addressed in this thesis is the generation and analysis of

microstructures made of non-circular fibers (Herráez et al., 2016b). For this reason,

most of the generation algorithms previously reviewed are not appropriate to reach

high fiber volume fractions with non-conventional fiber shapes or heterogeneous

diameter distributions, therefore a new algorithm has been developed in this work.

3.3 Generation of microstructures with non-circular fibers

A novel versatile strategy appropriate to generate a wide variety of 2-D microstruc-

tures with high fiber volume fractions, regardless of the fibers relative shape and

size, has been developed.

The generation process is illustrated in Figure 3.2. Initially, fibers are introduced

within the RVE domain up to the target fiber volume fraction is achieved. Then,

fibers are enlarged by a given tolerance magnitude, δ̃, in order to preserve a minimum

distance between them. Care is taken to preserve periodicity of the microstructure

fiber-wise. At this point, massive fiber overlapping is likely to occur, especially for

high fiber volume fractions, see Figure 3.2b. The overlapping of fibers is quantified

through a potential, Υ, defined as the summation of the relative overlapping areas

as,

Υ =
N∑
i=1

N∑
j 6=i

Aij
Ai

(3.1)

where Ai is the cross section of fiber i, and Aij is the overlapping area of fibers

i and j. Afterwards, the overlapping of fibers is solved iteratively not only by

translating the fibers, but also rotating them accordingly, as shown in Figures 3.2b,

c and d. Overlapping fibers are repelled from each other such that the potential is

reduced. The fibers repelling implementation was incorporated by means of the free

open source 2-D physics simulator engine Box2D (Catto, 2017). This library was

originally written in C++ by Erin Catto and published under the zlib license.

It must be remarked that fiber periodicity is preserved throughout this process.

Once all the fiber overlaps are solved, beyond a specified tolerance value of the

potential, Υmin, the iterative process is finished. The final microstructure is obtained
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Figure 3.2: Illustration of the generation algorithm applied to a 2-lobular fibers
microstructure with Vf = 65%: a) evolution of the fibers overlapping residual as
a function of the number of iterations, b) initial positions of the fibers, c) fibers
position at increment 19, d) final position of the fibers after potential minimization,
and e) final microstructure after fibers shrinking.

after shrinking the fibers by the same tolerance magnitude specified initially, δ̃, see

Figure 3.2e.

The fibers distribution may be heterogeneous with different shapes and sizes, so
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it can represent hybrid microstructures containing various fiber types.

3.3.1 Statistical analysis of microstructures

Using the algorithm presented in Section 3.3 a statistical analysis is carried out

to assess the statistical representativeness of the microstructures generated using

various non-circular fibers.

The statistical metrics were compared with the ideal Poisson dispersion of fibers

(complete spatial random, CSR). The statistical descriptors reported in this section

are the following:

� Execution time, texec.

� Voronoi cells area, cv.

� Local volume fraction, V loc
f .

� Nearest-neighbors distance, δ1 and δ2.

� Nearest-neighbor orientation, θ1.

� Second order intensity function, K(r).

� Radial distribution function, g(r).

� Two-point probability function, S2(x).

The baseline microstructures have a constant fiber volume fraction of Vf = 65%

with fibers of equivalent cross section regardless of their shape. The effective di-

ameter of a non-circular fiber, deff , is defined as the diameter of the circular fiber

whose cross section is equivalent. Whereas the diameter of a non-circular fiber, d, is

defined as the circumscribing diameter of the cross section, i.e. for a circular fiber

d = deff . The fibers size is not homogeneous, instead a normal distribution with

a standard deviation of 5% of the effective fiber diameter is selected to introduce

another source of variability in the microstructures. The size of the RVE is approx-

imately 12 times the effective diameter of the fibers. A minimum distance between

fibers was specified with a value of δ̃ = deff/40.

The fiber cross sections considered for this study are the following: lobular with 2,

3 and 4 lobes; polygonal fibers with 3 and 4 smoothed vertices (spolygons); elliptical

fibers; C-shaped fibers; and circular fibers as reference. Details of the non-circular

fibers geometry definition can be found in the Appendix A.
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Table 3.1: Average execution times for microstructures with Vf = 65% for different
fiber shapes and three RVE sizes. The number of fibers for the three RVE sizes is
approximately 120, 330 and 2070, respectively. Standard deviation values are shown
in parenthesis.

Fiber Execution time, texec [s]

L = 12 deff L = 20 deff L = 50 deff

Circular 2.6 (0.4) 5.9 (0.9) 35 (3)

2-Lobular 4.2 (0.7) 11.3 (1.6) 70 (14)

3-Lobular 4.9 (0.8) 11.8 (1.6) 76 (16)

4-Lobular 6.2 (1.1) 15.8 (4.2) 98 (15)

Spolygon-3 4.9 (0.8) 12.1 (2.6) 81 (10)

Spolygon-4 6.2 (2.2) 13.1 (2.9) 86 (12)

Elliptical 4.1 (0.4) 11.1 (1.4) 69 (13)

C-shaped 6.5 (1.1) 23 (4) 140 (21)

Execution time, texec

The RVEs generation algorithm was implemented in Python 2.7 and it runs in a

single CPU of an Intel® Xeon® Processor E5-2680.

The execution time texec is reported in order to illustrate the additional com-

putational effort required to deal with complex fiber geometries compared to the

reference circular ones. This value is reported not only for the reference case, with

RVE size L = 12 deff , but also for larger RVEs (L = 20 deff and 50 deff).

The results are shown in Table 3.1. The lowest execution time is obtained for

the microstructures of circular fibers, as expected. Computation of the fibers in-

tersection is the most time consuming task of the generation algorithm, therefore,

concave and complex cross sections increase the computational cost noticeably. It

is observed that the execution time raises with the number of geometrical features

of the fiber section, for instance, microstructures of lobular fibers with 4 lobes are

slower to generate than those with 2 and 3 lobes, as it happens with the smoothed

polygonal fibers. C-shaped fibers present the most complex geometry and in some

cases present convergence issues related to their concave cross section, this effect is

more accused the larger the RVE.

Nevertheless, compared to the reference circular fibers, the execution time re-

mains in the same order of magnitude, with increment ratios between 1.5 and up
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to 4 for the case of C-shaped fibers. Regarding the effect of the RVE size on the

computation time, as the number of particles increases with the square of the mi-

crostructure size, L, the execution time is proportional to L2.

The execution times are considered sufficient for the generation of RVEs contain-

ing a few hundred or even thousands of fibers, as it is the case of this thesis. The

efficiency could be greatly improved by the use of a compiled programming language

(e.g. C++) with parallelization capabilities or introducing some modifications in the

implementation strategy (e.g. conditioning the initial position the fibers).

Local volume fraction, V loc
f

The local volume fraction is usually represented as a scalar field on the spatial

domain of the microstructure, V loc
f .

The local volume fraction can be calculated at any point P (x, y) of the RVE for

a given sampling radius, sr, as the fiber volume fraction within the circle of center

P and radius sr. Figure 3.3a illustrates the procedure to compute V loc
f (x, y; sr)

in a microstructure of circular fibers with Vf = 65% and sr = 4 d. Since the

microstructure is periodic, there is no need to correct the edge effect as it is always

possible to measure the volume fraction of the fibers falling into the region of interest.

The resulting local volume fraction field is plotted in Figure 3.3b. It is observed

that the limits of V loc
f , 58.5 and 69% respectively, bound the mean value Vf . This

dependence of the maximum and minimum local volume fraction on the sampling

a)

sr

P (x, y)

58.5

60.0

61.5

63.0

64.5

66.0

67.5

69.0

V
loc
f

(%
)

Figure 3.3: Local volume fraction description: a) computation of the V loc
f at P with

sr/d = 4, and b) resulting field over the whole RVE with Vf = 65%.
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Figure 3.4: Analysis of the local volume fraction as a function of the sampling radius,
sr: a) upper and lower bounds of V loc

f for 10 microstructures with circular fibers, b)
comparison of the results for all the fiber cross sections under analysis, c) local fiber
volume fraction field of a microstructure of 3-lobular fibers with sr/deff = 2 and d)
sr/deff = 8.

radius can be read as a means to detect matrix rich regions and fiber clusters.

The local volume fraction descriptor was characterized by means of the resulting

lower and upper bounds as a function of the sampling radius, sr. A summary of

the results obtained is shown in Figure 3.4. An example of the effect of sr on

the lower and upper bounds of V loc
f is plotted in Figure 3.4a for the case with

circular fibers. For very small sr values, matrix rich regions are identified as the

areas with the lowest local fiber volume fraction, as it is observed in Figure 3.4c,
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Figure 3.5: Coefficients of variation, cv, for the microstructure systems studied.
Distributions obtained from 10 equivalent realizations.

while areas with closely packed fibers read volume fraction values higher than the

average, Vf . Nevertheless, for higher sr values, both upper and lower bounds follow

an asymptotic trend towards the average fiber volume fraction, see Figure 3.4d. As

suggested previously, the local volume fraction descriptor can be employed to detect

resin rich areas whose size is larger than the sampling radius used.

The V loc
f vs. sr/deff curves for the rest of the fiber cross sections are shown in

Figure 3.4b. All of them observe the same trend and overlap, so it can be concluded

that similar results in terms of fiber clustering or resin pockets are observed. This

can be easily explained by the high fiber volume fraction under consideration in this

study.

Voronoi cells area, cv

The Voronoi cells area statistics was computed for all the microstructures generated.

For this purpose, the RVE is divided into cells, each of them corresponding with a

fiber center such that every cell contains only one fiber center and every point of

the cell is closer to its center than the others. An efficient scheme to compute the

Voronoi tessellation is the Bowyer-Watson algorithm (Bowyer, 1981; Watson, 1981).
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Based on the Voronoi cells area, the coefficient of variation cv is defined as,

cv =
std(Aiv)

mean(Aiv)
(3.2)

where Aiv represents the Voronoi cell area of fiber i, mean and std are the arithmetic

mean and standard deviation of the population. The coefficient of variation is a

statistical descriptor that quantifies the randomness in the spatial distribution of the

fibers. For instance, regular fiber arrangements, such as hexagonal or rectangular

patterns, present cv = 0; whereas a high cv suggests higher randomness in the fibers

distribution.

Figure 3.5 collects the distribution of cv from 10 realizations on each microstruc-

ture type represented as box plots. The box plots are intended to describe the

population of the variable of interest, in this case cv, by means of the quartiles. The

box encloses the Q1 and Q3 quartiles, whereas the red line represents the median of

the distribution (Q2). The coefficients of variation obtained are in the range between

0.12 and 0.25. These values are reasonably high for such dense fiber volume fraction

(Vf = 65%), compared to other results reported in the literature for similar volume

fractions (Catalanotti, 2016). It is observed that circular fibers show the lowest cV

values, compared to the rest of the fibers. On the other hand, the lobular-2 fibers

exhibit the highest coefficient of variation, what can be explained due to their higher

aspect ratio.

Nearest-neighbors distance, δ1 and δ2

The nearest-neighbors distance descriptors are shown through the probability density

function (PDF) of the distance between one fiber and its first and second nearest

neighbors, δ1 and δ2 respectively (Diggle, 1983). This statistical metric informs

about the short-distance interaction between fibers.

The results obtained for the RVEs under analysis are plotted in Figure 3.6. The

PDFs are obtained using the kernel density estimation (KDE) based on normal dis-

tributions (Scott, 1992). It is important to note that the minimum allowable distance

between adjacent fibers was δ̃ = deff/40, the vertical grey line on the plots represents

this tolerance distance. As expected, all of the microstructures observe narrow dis-

tributions of δ1/d close to the minimum tolerance distance, δ̃. Whereas the second

nearest-neighbor distributions present higher scatter. Regarding, the fiber shape ef-

fect on this descriptor, it is observed that concave fibers (lobular and c-shaped) read
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Figure 3.6: Probability density functions (PDF) of the first and second nearest-
neighbors distances, δ1 and δ2, for the different microstructure cases over 10 realiza-
tions. The minimum distance between adjacent fibers was set to δ/deff = 0.025.

a higher dispersion in both, first and second, nearest-neighbor distances. Indeed,

for lobular fibers the nearest-neighbor distances decrease slightly as the number of

lobes increases, due to the higher number of concave-convex entanglements.
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Figure 3.7: Cumulative density function (CDF) of the nearest-neighbor orientation
for the different microstructure cases over 10 realizations. Ideal CDF of a complete
spatial random distribution, CSR, is shown as reference (dashed line).

Nearest-neighbor orientation, θ1

The orientations at which the nearest fiber is located, θ1, can be used to comple-

ment the short-distance description of the nearest-neighbor distance metric and the

observation of fibers packing patterns, if any. In this case, the cumulative density

function (CDF) is employed to represent this statistical descriptor.

The CDFs of θ1 is plotted in Figure 3.7. A CSR distribution would be represented

as a straight line, standing for all of the orientations are equally alike to occur. In

spite of the high fiber volume fraction, it is observed that all of the microstructures

generated are remarkably random, as they follow the same trend of the theoretical

CSR distribution (dashed line). For microstructures with extremely high values of

fiber volume fraction (Vf > 80%) it is expected to observe preferred orientations

representing the hexagonal packing of fibers along the RVE.

Second order intensity function, K(r)

The second-order intensity function or Ripley’s K-function provides insight about

the pattern distribution of fibers from short to long range distances (Ripley, 1977).

It is defined as the ratio between the number of extra fibers expected to lie within a

radial distance r of an arbitrary point and the actual number of fibers within that
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Figure 3.8: Besag’s functions, L̂(r/d): a) comparison of a random microstructure
with a regular hexagonal pattern, and b) analysis of microstructures with non-
circular fibers.

area.

K(r) =
1

N ·Na

N∑
i=1

Îi(r) (3.3)

where N is the number of fibers in the RVE, Na is the average number of fibers per

unit area Na = N/A, and Îi(r) is an indicator function which is 1 when the center

of fiber i lies within r distance from the reference point and 0 otherwise.

The calculation of the K-function from a non-periodic microstructure requires

taking into account the edge effects (Pyrz, 1994). Nevertheless, the application of

equation 3.3 to a periodic microstructure is straightforward, as the RVE can be

replicated in the two directions (x, y) as many times as necessary. To quantify the

randomness in the fibers distribution throughout the microstructure, the resulting

K-function is compared to that of a reference 2-D CSR dispersion,

K̂ref(r) = πr2 (3.4)

A proper comparison of K̂ with K̂ref can be achieved by the transformation of

equation 3.3 by means of Besag’s L-function (Besag, 1977).

L̂(r) =

√
K̂(r)

π
− r (3.5)
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3. Microstructures generation

It is easily observed that for CSR-like distributions L̂ = 0. For interpretation,

positive values of L̂(r) indicate clustering over that spatial scale whereas negative

values indicate dispersion.

In Figure 3.8, the resulting L-functions obtained for the microstructures with cir-

cular fibers (Figure 3.8a) and for the non-circular fiber cross sections (Figure 3.8b)

are shown. The results of a regular microstructure with the typical hexagonal pat-

tern are shown to illustrate the effect of a regular fiber pattern on the L-function,

where the sharp peaks and troughs evidence regularity in the fibers distribution.

On the other hand, the microstructure generated with the proposed methodology

(solid line) shows the typical features of a random dispersion of fibers: an initial

peak around r/d = 1, followed by some oscillations with an approximate period of

r/d ≈ 1, which progressively decays to L̂ → 0 for r/d ≥ 5. The same features

are observed for the non-circular fibers, verifying the long range randomness in the

fibers distributions.

Radial distribution function, g(r)

The radial distribution function, g, computes the probability of finding the center

of a fiber at a given distance r from the center of another particle. It is calculated

by determining the number of fibers lying within an annular region of inner radius,

r, and thickness, dr, divided by the average number of fibers per unit area, Na,

(Ripley, 1981). Taking advantage of the K-function computed previously, the radial

distribution function can be written as,

g(r) =
1

Na2πr

dK(r)

dr
(3.6)

By definition, the radial distribution function of a CSR distribution is g(r) = 1,

see equation 3.4. Thus, a random dispersion of fibers will tend to 1 for large enough

r values.

The radial distribution functions computed based on the K-functions from the

previous section are shown in Figure 3.9. The g function obtained from a regular

hexagonal pattern of circular fibers is plotted in Figure 3.9a (dashed line), observing

abrupt oscillations which evidence the regular dispersion of fibers. Nonetheless, a

random dispersion of fibers result in a characteristic g function as shown by the

solid line: initially, a sharp peak denotes the presence of the first nearest-neighbor

(r/d ≈ 1); followed by some oscillations representing the next rows of neighboring
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Figure 3.9: Radial distribution function g(r/deff): a) comparison of random distri-
bution of circular fibers with an hexagonal regular arrangement, and b) comparison
of g for microstructures with different fiber shapes.

fibers (r/d ≈ 2, 3, 4 . . . ), which finally decay towards g = 1. The same analysis was

carried out for the microstructures with non-circular fiber shapes, see Figure 3.9b.

Regardless of the fiber cross section, randomness in the fibers distribution is evi-

denced for long distances (r/deff ≥ 5).

Two-point probability function, S2(x)

The two-point probability function, Sij2 (xA,xB), quantifies the probability of finding

simultaneously the phase i and the phase j at two arbitrarily chosen points xA and

xB, respectively, and can be formulated as (Torquato and Stell, 1982),

Sij2 (xA,xB) =
〈
χi(xA, α) · χj(xB, α)

〉
(3.7)

where the symbol 〈·〉 denotes the ensemble average of the product of characteristic

functions χi(xA, α) which are equal to 1 when the point xA lies in the phase i in

the sample α and equal to 0 otherwise:

χi(xA, α) =

1, if xA ∈ Di(α)

0, otherwise

(3.8)

Di(α) represents the domain covered by phase i. In general, the evaluation of the

characteristic functions for the computation of the S2 function may be prohibitively
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Figure 3.10: Two-point probability function: a) Bitmap discretization of a mi-
crostructure with circular fibers, b) Sf2 probability field in the 2D space, c) pro-
jection of Sf2 along different orientations (φ = cte), and d) projection of Sf2 along
various distances (|x| = cte).

costly. Nevertheless, assuming statistical homogeneity of the microstructure and

validity of the ergodic hypothesis, the two-point probability function becomes only

dependent on the relative position of x = xB − xA (Torquato and Stell, 1982;

Torquato, 2002), and is written as,

Sij2 (x) =
1

|Ω|

∫
Ω

χi(x, α) · χj(x + y, α) dy (3.9)

where |Ω| stands for the area of the sample analyzed. A number of sampling meth-

ods can be employed to determine the values of the two-point probability function,

starting from Monte-Carlo method based techniques, later refined by the sampling

template approach to sample isotropic microstructures (Smith and Torquato, 1988).
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3.3. Generation of microstructures with non-circular fibers

To this end, a pixel-like discretization of the microstructure W ×H bitmap is con-

sidered, as in Figure 3.10a. The pixel size selected was 0.5 µm, however, for clarity

purposes in Figure 3.10a it is shown with 1 µm. In addition, considering the mi-

crostructure is periodic, equation 3.9 reduces to

Sf2 (m,n) =
1

WH

W∑
i=1

H∑
j=1

χf (i, j) · χf ((i+m) %W, (j + n) %H) (3.10)

where % represents the modulo operator, and f represents the fiber phase, with Sf2

abbreviating Sff2 . The summation in equation 3.10 requires an enormous number

of operations, O(W 2H2), for that reason in this work, the more efficient Fourier

transform procedure developed by Berryman (1985) is employed to sample the two-

point probability function as,

Sf2 (x) =
1

WH
IDFT

{
DFT{χf (x)} ·DFT{χf (x)}

}
(3.11)

with DFT and IDFT stand for the discrete Fourier transform, and its inverse, and B

stands for the complex conjugate of B. The number of operations needed to compute

equation 3.11 is O(WH log(WH) +WH) (Berryman, 1985). The calculations were

performed by means of the scientific library of Python: scipy (Oliphant, 2007).

The resulting Sf2 field of a random periodic microstructure is shown in Fig-

ure 3.10b. A peak of value Sf2 = Vf is observed at each of the corners, representing

the periodicity condition. Whereas, in most of the domain it drops to a plateau

around Sf2 = V 2
f , evidencing there are no long-range correlations in the system, so

falling of the two vector ends x into the fiber phase are independent events, each

with a probability equals to Vf .

To study the two-point probability function, the Sf2 field has been projected onto

φ = cte and |x| = cte curves. The typical curves obtained from the fibers orientation

analysis, φ = cte, are plotted in Figure 3.10c. For all φ values there is an initial

peak at |x| = 0, since the probability to find a zero-length vector (i.e. a point) on

the fiber phase is equal to the fiber volume fraction, Vf . For φ = 0 and 90◦, the

same peak is observed at |x| = L, as a result of the RVE periodicity. The plateau

encountered has a value around Sf2 = V 2
f , as explained previously. This set of curves

demonstrate the quasi-isotropic fibers distribution of the microstructure, since there

are no remarkable differences between φ. In these cases, the elastic properties could
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Figure 3.11: Two-point probability functions of various microstructures: Sf2 fields of
regular fiber arrangements a) hexagonal and b) square, and results for microstruc-
tures with non-circular fibers for c) φ = 45◦ and d) |x| = 30 µm.

be bounded by the analytical approximation provided by Hashin and Shtrikman

(1963).

Regarding the radial analysis, |x| = cte, a constant value of Vf is obtained at

|x| = 0 as expected. The rest of |x| values experiment a constant expectancy value

at Sf2 = V 2
f . Again, the microstructure periodicity is evidenced for |x| = L at φ = 0

and 90◦.

In the case of patterned microstructures, intense peaks and troughs are generated

along the Sf2 field. This is illustrated for a regular hexagonal and square patterns

in Figures 3.11a and b respectively. These fiber arrangements observe a regular
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3.4. A microstructures generator: Viper

dispersion of peaks located at the corresponding fiber centers, indicating the presence

of preferred x vectors.

The analysis of the microstructures by means of the two-point probability func-

tion is collected in Figures 3.11c and d. All the microstructures show the same

features as described for the circular fibers RVE: Sf2 = V 2
f for all the domain ex-

cepting the RVE corners where its value is Vf . The only difference found lies in the

φ = cte analysis, where the decay rate for small x is slightly different depending

on the fiber cross section, what suggests a different short distance interaction be-

tween adjacent fibers due to their convex-concave geometry as shown in the detail

in Figure 3.11c.

3.4 A microstructures generator: Viper

The algorithm developed for the generation of random microstructures with high

fiber volume fraction and arbitrary fiber shape and size was embedded in a licensed

user interface called Viper.

The user interface is a ready-to-use software package developed in Python which

takes advantage of the Box2D library to carry out the fiber repelling process described

in Section 3.3.

Figure 3.12: Main window of the user interface of Viper.
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b)a)

Figure 3.13: a) Illustration of a hybrid glass-carbon microstructure with non-circular
fibers generated with Viper, and b) corresponding stress-strain fields obtained by
DFT methods (FFT-MAD, Lucarini and Segurado (2018)).

Viper also includes capabilities to calculate the statistical descriptors employed

in Section 3.3.1: execution time, Voronoi cells area, local volume fraction, nearest-

neighbors distance, nearest-neighbors orientation, radial distribution function and

two-point probability function.

Other generation algorithms are available for the user such as the random se-

quential adsorption (RSA, Segurado and Llorca (2002)) and the nearest-neighbor

algorithm (NNA, Vaughan and McCarthy (2010)). Nevertheless, these algorithms

are not suited to reach high fiber volume fractions (Vf > 50%) with non-circular

fibers.

An important and very time consuming phase of any analysis in CMM is building

up the finite element (FE) model. To speed up this stage and make possible the

design of models containing hundreds or thousands of fibers, a number of scripts

were developed to generate FE models in a very automated manner in Abaqus

(Simulia, 2013). Some of these scripts were integrated into a plug-in (CMG), so

any user can generate a detailed computational micromechanics model in just a few

seconds combining Viper and this custom Abaqus plug-in (Viper-CMG). First, the

microstructure is generated by means of Viper and exported to a text file. Later,

the plug-in reads the text file to obtain the microstructure description and generates

the corresponding model (RVE, embedded cell model...).
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In the present, the estimation of the elastic properties of microstructures by

means of DFT (Discrete Fourier Transform) methods is being developed in col-

laboration with J. Segurado and S. Lucarini (Lucarini and Segurado, 2018), see

Figure 3.13. This numerical method is highly efficient and will be extended for the

analysis of the viscoelastic and elasto-plastic response of the material.

3.5 Concluding remarks

A novel strategy to artificially generate high fiber volume fraction microstructures

with arbitrary fiber shapes and sizes has been developed.

Although various algorithms to generate 2-D microstructures with high fiber

volume fractions can be found in the literature, most of them are intended to produce

random dispersions of uniform circular fibers (Wongsto and Li, 2005; Catalanotti,

2016; Vaughan and McCarthy, 2010).

In Section 3.3.1, it has been shown the ability of this technique to efficiently

generate statistically random periodic microstructures with a wide variety of fiber

shapes, including concave cross sections (e.g. lobular, C-shaped). These complex

fiber distributions enable the application of integrated computational materials en-

gineering (ICME) on the analysis, design and optimization of virtual microstructures

with improved properties.

In addition, a user interface called Viper was developed to facilitate the mi-

crostructures generation procedure, avoiding repetitive time consuming implemen-

tations, thus accelerating the preprocessing stage during micromechanical studies.

As detailed in Section 3.4, Viper not only includes other commonly used genera-

tion algorithms (RSA and NNA), but also provides all the statistical descriptors

addressed in Section 3.3.1.

In the next chapters, microstructures generated with Viper will be used by

means of computational micromechanics (CMM) finite element models to evaluate

the transverse strength (Chapter 4) and intralaminar transverse fracture energy

(Chapter 5) of the composite material.
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4Effect of fiber shape on the
transverse strength

4.1 Introduction

Since the discovery of high-performance carbon fibers, the composite production

process has been optimized to maximize their intrinsic mechanical, thermal and

electrical properties. Despite these efforts, the morphology of the reinforcing fibers

has barely evolved since its discovery and most developments in this field were kept

at a basic research level due to major manufacturing difficulties (Chand, 2000;

Liu and Kumar, 2012). Nevertheless, some research groups have worked on the

development of manufacturing processes of non-conventional fiber cross sections at

lab-scale.

Pitch-based carbon fibers with different non-circular cross sections have been ex-

tensively studied by Edie and Dunham (1989). This research group determined the

main manufacturing parameters, as the mesophase pitch viscosity, winding speed

and temperature, controlling the fiber properties using a lab-scale set-up. Trilobal

and octolobal fibers were obtained from the extrusion of the filaments through dif-

ferent cross section spinnerets (Edie et al., 1986, 1993). From a mechanical point

of view, trilobal and round fibers respond differently to increasing process temper-

atures (i.e. carbonization). Trilobal fibers exhibited a higher longitudinal elastic

modulus and tensile strength than standard circular ones (744 GPa and 2.72 GPa,

respectively being 1900 ◦C the carbonization temperature). Compared to the ra-

dial fiber texture, typical of circular carbon fibers spun from mesophase pitch, the

microstructure of trilobal carbon fibers does not emanate radially from a center

point, but instead grows up from three lines extending from the root of each lobe.



4.1. Introduction

Ribbon-shaped mesophase-pitch fibers have also been produced, obtaining a line-

origin transversal texture which enhances their transport properties (Edie et al.,

1993). Recent studies demonstrated the possibility to manufacture X-type fibers

which theoretically can increase 3 ∼ 8 times the fracture energy of cementitious

composites when compared to conventional circular fibers (Zhang and Dong, 2011).

Hollow carbon fibers can be fabricated by several methods such as coaxial electro-

spinning, bi-polymer blends or fiber templates. A 60% hollow carbon fiber embedded

in an epoxy matrix (Vf ≈ 40%) can result in a composite material with a density

as low as 850 Kg/m3 as compared with the 1600 Kg/m3 of the standard fully dense

non-hollow composite demonstrating the high potential for structural lightweight

applications (Liu and Kumar, 2012). The fiber manufacturer Toray developed hollow

carbon fibers with tensile strength and modulus of 2.2 and 190 GPa, respectively,

by carbonizing bi-component wet spun sheath-core fibers, with PAN as the sheath

and PVA (polyvinyl alcohol) as the core (Liu and Kumar, 2012).

Circular, hollow and C-shaped carbon fibers were also manufactured by melt-

spun of isotropic pitch (Shim et al., 2002; Park et al., 2003, 2004). Composite

materials were produced by hot-press consolidation of prepregs prepared with this

set of non-circular fibers by drum winding. Interlaminar shear strength specimens

(ILSS) demonstrated that C-shaped CFRPs perform better as compared with circu-

lar baseline composites manufactured maintaining the same equivalent cross section.

The C-shape resin contact area was 2.72 times larger that the circular cross section

with the same area (Park et al., 2003). In addition, C-shaped carbon fiber com-

posites exhibited excellent energy absorption under impact as well as better fiber

wettability and thermal conductivity than circular fibers (Park et al., 2003, 2004).

Patterned carbon fibers with customized surface contours were produced by Liu and

Kumar (2012) and Hunt et al. (2012) using a combination of a bi-component fiber

melt spinning and a sulphonation with polyethylene (PE) precursors. By properly

designing the flow path and spinneret geometry, carbon fibers with trilobal, flower,

and gear-shaped cross-sections in a diameter range from 0.5 to 20 µm were produced.

Although carbon fibers obtained by this method have not reached yet standard me-

chanical properties (tensile strength 1.1 GPa and modulus 103 GPa), the customized

fiber geometry may extend their application in different fields.

Manufacturing of structural composites with non-circular fibers is still kept at

laboratory scale limited by the scalability of the production process as compared

with conventional circular fibers. Therefore, material optimization to achieve tai-
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lored properties based on trial and error campaigns would not be suitable at this

scale and a more efficient strategy based on virtual material design and Integrated

Computational Materials Engineering (ICME) can be adopted instead, at least dur-

ing the first stages of the evaluation process (Llorca et al., 2011).

For this purpose, computational micromechanics (CMM) emerges as the most

suitable strategy to assess the influence of micromechanical variables on the me-

chanical performance at the ply level. Artificial microstructures are generated nu-

merically as explained in Chapter 3 by means of Viper to represent the actual fibers

distribution within the composite ply cross section.

In this chapter, CMM is used to ascertain the effect of the shape of reinforcing

fibers on the transverse tension and compression strengths in a carbon/epoxy uni-

directional ply with a 50% fiber volume fraction. The results shown in this chapter

were published in (Herráez et al., 2016b).

4.2 Computational micromechanics

The micromechanical model developed is based on the analysis of a representative

volume element (RVE) containing a periodic and random dispersion of parallel fibers

embedded in a polymer matrix representing the transversal section of an unidirec-

tional composite ply (González and Llorca, 2007a; Totry et al., 2008a,b). In this

work, the volume fraction of fiber reinforcement was set to 50% in all simulations,

a value that is usually attained in manufacturing of common structural FRPs. No

attempt to ascertain the influence of fiber volume fraction on the transverse strength

properties was done in this chapter although damage triggering mechanisms by fiber

debonding and matrix shear yielding should not be strongly affected in this case.

The RVE dimensions were large enough to ensure simulation results were size

independent in a statistical sense, without exceeding the computational resources,

to allow fast and efficient computations. A square RVE of L = 58 µm in length was

enough to capture the fundamental fracture mechanisms under transverse tension

(interface failure) and compression (matrix shear yielding) assuming an average di-

ameter of the fibers of d = 7.09 µm (representative of AS4 carbon fibers). Therefore,

about 8 fibers along each of the axis of the plane of transverse isotropy (L/d ≥ 8)

are distributed (a total of 42 in the RVE for Vf = 50%). A typical RVE is shown

in Figure 4.1a. The RVE was extruded along the fiber axis with a thickness of

w = 0.5 µm. The results were compared with RVEs containing 80 fibers to ensure
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Fiber

Interface

Matrix

a)

b)

Figure 4.1: Schematic 2-D view of the model showing the detail of the fibers dis-
tribution, FEM mesh, cohesive interface and periodic boundary conditions (PBC).
The transverse tension loading case along x2 direction is illustrated.

that the size of the RVE did not influence significantly the model predictions.

4.2.1 Boundary conditions

To minimize the influence of the boundary conditions on the mechanical response

of the model, periodic boundary conditions (PBC) were employed instead of other

strategies like iso-strain or iso-stress approaches. PBC were imposed between op-

posite faces of the RVE to ensure the displacement continuity with the neighboring

RVEs as a jigsaw puzzle. For a given RVE with dimensions of w × L × L, PBC

are introduced as nodal displacement constraints between opposite RVE faces using

the equations displayed in Figure 4.1b. Where x1, x2, x3 are the coordinates axis

(0 ≤ x1 ≤ w, 0 ≤ x2 ≤ L, 0 ≤ x3 ≤ L) and
−→
Ui is the displacement of the master

node i (with i = 1, 2, 3). As a result, three master nodes are defined on the three di-

mensional unit cell: MN1(w, 0, 0), MN2(0, L, 0), MN3(0, 0, L). Uniaxial tension and

compression in both transverse directions (x2 and x3) can be imposed to the RVE

by applying the appropriate displacements to the master nodes, see Figure 4.1a.
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4. Effect of fiber shape on the transverse strength

For instance, uniaxial tension or compression along the x2 direction is imposed with
−→
U2 = (0,±δ2, 0),

−→
U1 = (u1, 0, 0) and

−→
U3 = (0, 0, u3), where δ2 stands for the tensile

or compressive displacement applied, and u1 and u3 the resulting lateral Poisson

contractions.

Previous to the mechanical load, a homogeneous uniform thermal step is applied

without external loading to reproduce the cooling down process from curing (175◦C)

to service temperature (15◦C). This thermal step of ∆T = −160◦C induces a residual

thermal stress microfield as a result of the mismatch in the thermo-elastic constants

of fibers and matrix.

4.2.2 Constitutive models of fiber, interface and matrix

The RVE was discretized using finite elements in Abaqus/Standard (Simulia, 2013).

The matrix is modeled with 8-node fully integrated brick isoparametric elements

(C3D8), while the fibers are meshed with 6-node fully integrated wedge isopara-

metric elements (C3D6). The fiber/matrix interface debonding was simulated with

8-node cohesive isoparametric elements (COH3D8) inserted at the interfaces between

fibers and matrix. Perfect and homogeneous contact between fibers and matrix was

assumed without any gaps at the interface. An approximate element size of 0.5 µm

was selected.

Carbon fiber

Carbon fibers were modeled as linear elastic and transversely isotropic solids. The

elastic modulus in the longitudinal direction of AS4 carbon fibers was obtained

experimentally as described in Section 2.1.3 through single-fiber tensile tests, while

the properties in the transverse direction were taken from the literature (Herráez

et al., 2015). Carbon fiber nonlinear elastic behavior in the longitudinal direction

was neglected as this chapter is focused on the transverse loading of a unidirectional

lamina (Curtis et al., 1968), see Section 2.1.3 for more details. In addition, fiber

fracture is not taken into account in agreement with experiments carried out in

AS4/8552 (González and Llorca, 2007a).

The thermoelastic properties of AS4 carbon fibers introduced in the numerical

model are reported in Table 4.1.
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Table 4.1: Mechanical properties of AS4 carbon fiber (Herráez et al., 2015).

Ef
1 Ef

2 νf12 νf23 Gf
12 Gf

23 αf1 αf2

[GPa] [GPa] [GPa] [GPa] [10−6 ◦C−1] [10−6 ◦C−1]

231 13 0.3 0.46 11.3 4.45 -0.9 7.2

Fiber/matrix interface

Fiber/matrix interface failure was taken into account using a classical cohesive zone

method, as shown in Figure 4.2a (Camanho and Davila, 2002; Turon et al., 2006,

2010)

To this end, cohesive elements are inserted at the fiber/matrix interface follow-

ing a mixed-mode traction-separation law where damage onset is controlled by a

quadratic stress criterion (Ogihara and Koyanagi, 2010):

(〈tn〉
N c

)2

+

(
ts
Sc

)2

+

(
tt
Sc

)2

= 1 (4.1)

where 〈 〉 stands for McCaulay brackets defined as 〈x〉 = (x+ |x|)/2, tn is the normal

traction and, ts and tt are the shear components of the traction vector. N c is the

normal strength and Sc is the shear strength assumed to be equal in both shear

directions s and t. Initially, the response of the cohesive elements is linear-elastic

with a very high penalty stiffness, kcnn and kcss, prior to damage regime initiates, δ0.

Then, linear softening is induced to represent stiffness degradation up to complete

failure of the material, δu, see Figure 4.2a. Under mixed-mode loading, the energy

dissipation is computed by means of a Benzeggagh-Kenane (BK) law as (Benzeggagh

and Kenane, 1996),

Gc = Gc
n +

(
Gc
s −Gc

n

)
·
(

2Gs

Gn + 2Gs

)ηcBK

(4.2)

where ηcBK is the BK power exponent, Gc
n and Gc

s are the normal and shear fracture

energies respectively, and Gn and Gs the reciprocal work under mixed mode prop-

agation. Figure 4.2b illustrates the response of the constitutive model under mode

I, mode II and mixed-mode conditions (δn, δs 6= 0).

Concerning the interface parameters, it will be assumed that the properties in the

transverse shear direction, t, are equal to those in the longitudinal shear direction,

s. Therefore, two interface strengths (N c and Sc), two interface energies (Gc
n and
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Damage initiation

Damage evolution

Mode-IMode-II

Mixed-mode

a) b)

Figure 4.2: Schematic of the traction-separation curves of the cohesive law of the
fiber/matrix interface: a) uniaxial loading in the normal direction showing the dam-
age variable evolution, Dc, and b) representation of a mixed-mode case with normal
and shear contributions (n and s).

Gc
s), two penalty stiffnesses (kcnn and kcss), and the BK exponent (ηcBK) need to be

specified.

The penalty stiffness, kcnn and kcss, are non-physical parameters that should be

large enough to ensure displacement continuity in the absence of interface damage

while minimizing convergence difficulties due to ill-conditioned stiffness matrix.

The interface shear strength, Sc, was determined experimentally from push-in

tests as explained in Section 2.1.2. While the normal interface strength is set to

N c = 2/3 · Sc according to Ogihara and Koyanagi (2010).

Regarding the interface fracture energies, to the knowledge of the author, there

are no reliable experimental methods to measure them. Setting the fracture energy

values according to parametric studies that aim at reproducing macroscopic exper-

imental results was the approach followed by Canal et al. (2012b). Nevertheless,

the fracture energies obtained in this way comprise other dissipation mechanisms

together with the pure interface debonding process, essentially matrix plasticity and

fiber bridging. In the case of the normal separation mode, n, this is translated into

an overestimation of the real interface fracture energy. For instance, assuming a

value of Gc
n = 150 J/m2 and linear softening, the ultimate separation at failure

would be δnu = 2Gc
n/N

c ≈ 70 µm, which is around ten times the carbon fiber di-
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Table 4.2: Material properties of AS4/8552 fiber/matrix interface (Naya et al., 2014).

N c Sc kcnn kcss Gc
n Gc

s ηcBK

[MPa] [MPa] [GPa/µm] [GPa/µm] [J/m2] [J/m2]

42 63 100 100 2 30 1.45

ameter! In view of this, the mode I fracture energy is assumed to be Gc
n = 2 J/m2.

Similar values are reported in the literature (Melro et al., 2013; Vaughan and Mc-

Carthy, 2010). For the shear fracture energy, Gc
s, a value of 30 J/m2 was assumed

such that the separation at failure was δsu = 1 µm. This energy is lower than that

of the matrix, representing the brittle nature of the fiber/matrix interface. Finally,

from Lopes et al. (2009), the BK exponent was set to ηcBK = 1.45.

The interface parameters used in the simulations are presented in Table 4.2.

Epoxy matrix

The epoxy-polymer matrix is represented using the isotropic damaged/plasticity

model included in Abaqus (Simulia, 2013). To summarize, the main features of

this constitutive model are the pressure dependent yield surface and the distinction

between tensile and compressive damage evolution. This model requires not only

the definition of the uniaxial tensile and compressive mechanical response, but also

the evolution of the yield surface (plasticity) and material degradation (damage).

Although this model requires a complex calibration through multiaxial tests, Naya

(2017) showed that from the elastic modulus, Em, the compression yield limit, σmyc,

and the internal friction angle, φm, characterization previously shown in Section

2.1.1, the representative behavior of the polymer matrix can be captured.

Under uniaxial tension the matrix behaves as a linear elastic solid until the tensile

strength value is reached, σmt , which corresponds to the onset of material degradation

(microcracking). Increasing the stretching leads to nucleation and coalescence of

voids and microcracks inducing material softening translated into a decay in the

stress, σt, as shown in Figure 4.3a. A linear decay in the tensile stress profile

was selected in this work. Independently, a linear damage evolution law in tension

was specified, Dm
t (ε̃pl

t ). Strain softening is controlled by the fracture energy of the

polymer, Gm
t . However, in a finite element scheme element size regularization is

performed through the characteristic element length, l∗, to minimize the influence

of the mesh on the results.
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a)

b)

c)

Figure 4.3: Schematics of the constitutive model of the matrix under uniaxial tension
and compression: a) stress vs. strain curves, b) damage variables evolution (Dm

c and
Dm
t ), and c) plastic strain evolution (εpl

c and εpl
t ).

Under uniaxial compression, the response is linear and elastic up to the initial

compressive yield limit, σmyc. Then, plastic hardening takes place until the ultimate

stress value is reached σmuc at the critical plastic strain, ε̃pl
crit. At this point material

collapse begins by means of a decay in the stress, Dm
c (ε̃pl

c ), see Figure 4.3.

In order to describe the plastic flow and the yield surface evolution, the dam-

aged/plasticity model requires five additional parameters: the dilation angle, ψm,

the eccentricity, εm, the initial biaxial to uniaxial compression strength ratio, σb0/σc0 ,

the tensile and compressive meridian yield condition ratio, Km
c , and the viscosity,

µm. The values selected for these parameters are shown in Table 4.4. In the ab-

sence of triaxial test data, the maximum plastic dissipation is assumed in this work.

Therefore, the dilation angle is set equal to the internal friction angle, ψm = χm.

For more details in the parameters selection and the constitutive equations of

the matrix constitutive model, the reader is referred to Naya (2017).
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Table 4.3: Parameters of the damaged/plasticity model that characterize the 8552
epoxy matrix under uniaxial tension and compression (Naya, 2017).

Em νm αm σmt0 Gm
t σmyc σmuc

[GPa] [10−6 ◦C−1] [MPa] [J/m2] [MPa] [MPa]

5.07 0.35 52 121 90 176 180

Table 4.4: Input parameters of the matrix damaged/plasticity model defining the
plastic flow and yield surface evolution (Naya, 2017).

ψm [◦] εm σb0/σc0 Km
c µm

29 0.1 1.29 1.0 0.0001

4.2.3 Microstructure generation

Four different families of fiber cross sections were considered in this work as repre-

sented in Figure 4.4 including standard circular, lobular (2, 3 and 4 lobes), polygonal

(3 and 4 edges) with smoothed vertices, and elliptical with 0.75 eccentricity ratio.

Non-circular fibers size was selected such that the cross sectional area was equal to

that of the reference circular fibers (deff = d(circular) = 7.09 µm for AS4 carbon

fiber) for comparison purposes. The details of the non-circular fiber cross section

geometries are detailed in Appendix A. An additional set of microstructures with

2-lobular and elliptical fibers aligned in the x2 direction was considered to study the

effect of cross section orientation on the overall transversal behavior of the compos-

ite material. The detailed geometry definition of the lobular and polygonal fibers

is presented in Figure 4.5a and b, respectively, with the corresponding dimensions

used in the simulations (fillet radii, circumscribed diameter, etc).

It was assumed that the microstructure of the composite was given by an infinite

translation of the RVE along the two coordinates axis and thus the fiber positions

within the RVE should keep this periodicity condition. Fiber centers were generated

randomly and sequentially according to the random sequential absorption algorithm,

RSA (Segurado and Llorca, 2002). No fiber-to-fiber contacts were included in the

model and the position of each new fiber was accepted if the distance between neigh-

boring fiber surfaces was greater than 0.05 d. The assumptions made on idealization

of the microstructure could potentially have an impact, for instance, in fiber-to-fiber

contacts resulting from a deficient resin impregnation or in a highly clustered fiber

dispersions, but these effects are considered out of the scope of this work. This
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a) b) c)

d) e) f)

g) h) i)

Figure 4.4: Representative volume element example of each microstructure config-
uration: a) circular, b) 2-lobular, c) 2-lobular aligned, d) 3-lobular, e) 4-lobular, f)
3-polygonal, g) 4-polygonal, h) elliptical and i) elliptical aligned.

restriction ensures an adequate mesh discretization of these regions (González and

Llorca, 2007a; Totry et al., 2008a,b). In addition, the distance between the fiber

surface and the RVE edges should be greater than 0.15 d to avoid distorted finite

elements during meshing. Fibers intersecting the RVE edges were split and comple-

mented at the opposite sides of the square RVE to create a periodic microstructure.

New fibers were added until the desired volume fraction of 50% was reached. The

model assumed a homogeneous dispersion of fibers within the epoxy matrix and

does not take into account local volume fraction variations related to the presence

of fiber clusters or resin rich regions.

The microstructures generation process was carried out with the in-house devel-

oped software tool presented in Section 3.4: Viper.
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Figure 4.5: Geometry definition and dimensions for lobular and polygonal fiber
sections: a) 3-lobular and b) 3-polygonal. Numerical values are shown in Table 4.5

Table 4.5: Summary of geometrical features of the lobular and polygonal sections
considered in this work (see Figure 4.5).

Shape α [◦] r/deff d/deff

2-lobular 90 0.60 1.38

3-lobular 60 0.64 1.20

4-lobular 45 0.65 1.14

3-polygonal 60 0.20 1.23

4-polygonal 45 0.23 1.10

4.3 Transverse ply behavior prediction

Five random RVEs for each of the different configurations considered were gener-

ated for the analysis. Simulations were carried out with Abaqus/Standard (Simu-

lia, 2013) within the framework of the finite deformations theory with the initial

unstressed state as reference. In the first step, the RVE was subjected to a ho-

mogeneous temperature change of -160◦C from the stress-free temperature down to

service temperature which was followed by the application of the individual loading

step (transverse tension or compression along x2 or x3 direction). In addition, sim-

ulations were performed with the same fiber distributions but without the thermal

step to ascertain the effect of residual stresses on the mechanical performance of the

unidirectional plies.
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4. Effect of fiber shape on the transverse strength

4.3.1 Ply thermal residual stress

Residual stresses appeared in the simulated RVEs during the thermal step due to

the mismatch between the thermo-elastic constants of the fibers and the matrix.

The matrix thermally shrinks more than the fibers during the temperature drop

and this strain incompatibility is solved with the generation of a residual stress field

at the micro level. The maximum compressive strain on the matrix and the Von

Mises strain on the fibers are depicted in Figure 4.6a for a 3-lobular fibers distribu-

tion, evidencing tension and compression stress states in the matrix and the fibers

respectively. Normal (tn or interface normal stress, INS) and shear (ts or interface

shear stress, ISS) stresses are generated also at the fiber/matrix interfaces which

could potentially affect the overall behavior of the unidirectional ply in the subse-

quent loading step. Generally speaking, high compressive normal stresses appeared

between two closely neighboring fibers being then tensile normal stress distribution

in this situation comparatively lower, see Figure 4.6b. In addition, interface shear

stresses appeared surrounding the regions of maximum normal compressive stresses

to accommodate the high normal stress gradient along the curved fiber/matrix in-

terface, see Figure 4.6c.

The summary of the maximum interface stresses (normal and shear) attained

during the cooling step for the different fiber cross sections analyzed is presented in

Figure 4.7. The values, average and standard deviation, represented in the plot were

obtained from the local maximum of the interface stress obtained in each of the five

realizations computed being the scatter attributed to the fibers relative position and

spatial distribution.

The results show that maximum normal stress values in tension 28 ∼ 29 MPa

were attained in those microstructures containing lobular fibers and this effect was

essentially attributed to the geometry of the fibers in the concave regions of their

perimeter. When the fiber interfaces were flat or convex, the normal stresses were

considerably reduced as compared with lobular sections (16 ∼ 18 MPa for polygonal

and 11 ∼ 13 MPa for circular and elliptical). Very interestingly, the higher the

number of lobes of such type of fibers, the higher the maximum interface compressive

and shear stresses obtained. No significant differences of maximum residual stresses

were detected in aligned microstructures (2-lobular and elliptical) when compared

with equivalent random distributions.

It should be mentioned that in all cases, the interface stress level obtained was

85



4.3. Transverse ply behavior prediction

a)
b)

100
80
60
40
20
0

55
33
12
-10
-32
-54

27
6

-15
-36
-57
-78

c)

3.0
2.6
2.2
1.8
1.4
0.9

Figure 4.6: Residual stresses after thermal step in a microstructure with 3-lobular
fibers: a) Maximum principal compressive strain field in the matrix (gray) and Von
Mises stress in the fibers (blue-red), b) detail of interface normal stress (tn), and c)
detail of interface shear stress (ts).

moderate and the interface damage initiation criterion was not fulfilled (eq. 4.1)

being the overall behavior of the unidirectional ply elastic during the temperature

drop. Previous studies have demonstrated that thermal residual stresses at the

interface may critically affect mechanical response. Thermal compressive stresses

provide higher transverse tensile strength (Hojo et al., 2009), while the presence of

the interface shear stress contributes to the early onset of damage when transverse

loading is applied (Gentz et al., 2004). In this respect, a difference in the transverse

tensile strength of lobular fibers configurations is expected a priori.

4.3.2 Ply transverse tensile loading

The response of the unidirectional plies under transverse tension is linear and elastic

up to the onset of damage which takes place at moderate transverse strain levels

of ε ' 1%. This transverse tensile failure is essentially brittle and is triggered by

the localization of interface cracks at the poles of the fibers in a given section of the
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Figure 4.7: Maximum residual thermal stresses at fiber/matrix interface of AS4/8552
with ∆T = −160◦C for each microstructure configuration.

material. Interface cracks are rapidly localized in a narrow band which is followed

by tearing of the ligaments between adjacent fibers (Canal et al., 2012a). These

failure mechanisms are accurately reproduced by the RVE simulations. For instance,

Figure 4.8a and b represent the final crack configuration right after failure for a

homogeneous dispersion of circular and 3-polygonal fibers, respectively. Interface

cracks are triggered at the fiber poles and are rapidly interconnected when tearing

of matrix ligaments between fibers occurs. The failure mechanisms are the same

irrespective of the shape of the fibers, although slight differences in the crack paths

were observed depending on the geometry connecting the poles of the fibers as shown

in Figure 4.8c and d.

The results shown in Figure 4.9a represent the transverse tensile strength, Yt,

for the RVEs containing different fiber cross sections. Circular fibers exhibited the

most balanced tensile strength in both directions, x2 and x3, among all the fiber

cross sections analyzed. This effect can be endorsed to the lower stress concentration

created by the circular fibers when compared with polygonal or lobular. For instance,

approximate knock-down factors of 17% and 8% are obtained for triangular and

quadrilateral fibers, respectively, although this effect can be even more detrimental

on the material performance depending on the fillet radii used, see Figure 4.5b.
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Figure 4.8: Equivalent plastic strain (gray-scaled) and interface damage (red) under
transverse horizontal tension (ε ' 1.0%): a) circular fibers, b) 3-polygonal fibers, c)
2-lobular aligned fibers, and d) 2-lobular fibers.

All configurations showed transversely isotropic behavior with the exception of

the aligned 2-lobular and elliptical fibers. In both cases, the transverse strength was

similar in the x2 direction, Yt ≈ 68 MPa, although an important reduction in the

transverse strength in the orthogonal direction x3 can be observed (−33% and −15%

for 2-lobular and elliptical, respectively). This effect can be attributed, in lobular

fibers, to the initial residual tensile interface stress (INS+) which prompts the earlier

interface failure as compared with convex sections, as shown in Figure 4.7.

Simulations were repeated without the initial thermal step in order to ascertain

the effect of residual stresses on the final transverse strength of the fibers distribu-

tions. Average values and standard deviations corresponding to all the realizations

in both directions, x2 and x3, are depicted in Figure 4.9a. In all cases, the transverse

tensile strength decreased in the absence of the thermal residual stress indicating a

strong shielding effect due to their compressive nature. Very interestingly, circular

and elliptical fibers presented the highest thermal residual stress effect (+15 ∼ 20%)
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Figure 4.9: Effect of residual stresses on the transverse strength of non-circular fibers
RVEs: a) tensile strength, Yt, and b) compressive strength, Yc.

what can be explained by the larger ratios between the compressive and tensile nor-

mal interface stress.
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4.3.3 Ply transverse compressive loading

Experimental evidences demonstrated that unidirectional plies subjected to trans-

verse compression fail after significant nonlinear deformation (εc ≈ 2 ∼ 4%) by the

development of matrix shear bands where severe plastic deformation and fiber/matrix

interface debonding occurs. The final failure is produced through an inclined crack

at ∼ 56◦ with respect to the plane perpendicular to the loading axis in the case

of standard carbon/epoxy composites (González and Llorca, 2007a; Naya et al.,

2017a). RVEs subjected to transverse compression failed following the aforemen-

tioned mechanisms as it is illustrated in Figure 4.10 for a homogeneous dispersion

of circular, 3-polygonal and 2-lobular fibers (aligned and randomly dispersed) where

the contours of accumulated plastic strain for an overall strain of εc ≈ 4% are plot-

ted for comparison. Interfacial voids controlled the transverse compressive strength

of the material leading thus to the localization of the matrix plastic strain between

adjacent fibers triggering the final percolation shear band in the matrix throughout

the RVE.

Generally, the results show that microstructures with lobular fibers presented

the best transverse compressive performance. This effect can be attributed to the

pre-tensile residual stress induced in the lobular fibers microstructures enhancing

their response under compression, see Figure 4.6. The results in terms of transverse

compressive strength, Yc, for all the fiber geometries analyzed are summarized in

Figure 4.9b. All the configurations showed equivalent transversely isotropic behav-

ior, in both directions, x2 and x3, of the RVE with the exception of the 2-lobular

and elliptical aligned distributions which showed some degree of anisotropy caused

by the alignment of the fiber cross sections.

Plastic shear bands are more intense in the case of the 3-polygonal distributions

where the fibers edges are aligned with the shear bands, Figure 4.10b, jumping from

fiber to fiber resulting in a final knock-down factor on the transverse compressive

strength of ∼ 13% when compared with the baseline circular fibers, Figure 4.9b. On

the other hand, 2-lobular aligned fiber distributions exhibited the highest enhance-

ment (∼ 16%) of the transverse compression strength in both directions compared

to conventional circular fibers being the shear bands more distributed within the

RVE, as shown in Figure 4.10c and d.

The influence of the residual thermal stresses was limited for the case of the

transverse compression for all the cases analyzed and this effect was attributed to
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Figure 4.10: Equivalent plastic strain (gray-scaled) and interface damage (red) under
transverse horizontal compression (εc ' 4.0%): a) circular fibers, b) 3-polygonal
fibers, c) 2-lobular aligned fibers, and d) 2-lobular randomly distributed fibers.

the fact that thermo-elastic residual stress were partially relieved due to the plastic

behavior of the polymer matrix under confined compressive stress state. Shear band-

ing occurs following the same mechanisms promoted by interface residual stresses

but plastic deformation helps to reduce the subsequent effect on the compressive

strength. As a result, Yc was not strongly affected, as observed in Figure 4.9b.

4.4 Concluding remarks

The mechanical behavior of a fiber-reinforced composite lamina under transverse

tension and compression has been simulated by means of computational microme-

chanics. This approach explicitly considers fibers distribution within the material

as well as matrix, fiber and interface thermomechanical properties which are in-

cluded in the simulations through the appropriate constitutive models. The simu-
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lations demonstrated the key role played by the two dominant damage mechanisms

(debonding of the interface and shear band formation in the matrix) controlling the

composite strength. In this work it has been observed the increase in tensile residual

stresses along the concave interfaces of lobular fibers, up to 2.6 times compared to

circular fibers. Under transverse tension, 2-lobular and elliptical fibers show a high

orthotropic behavior when aligned reaching +10% tensile strength in the alignment

direction (x2), but it drops around 12 ∼ 25% in the perpendicular direction (x3).

Regarding transverse compression, all the microstructures analyzed show in-plane

isotropic behavior, but those with aligned fibers. The most remarkable result is the

increase of compressive strength in microstructures with lobular fibers up to +20%

compared to circular fibers.

The results presented in this chapter not only show the ability of these models

to reproduce the physical failure mechanisms under transverse loading, but also the

potential to virtually predict the influence of design variables, such as fiber shape,

on the mechanical response of a unidirectional lamina. Virtual material design

opens the possibility of partially replacing or reducing costly and time-consuming

experimental testing campaigns. This strategy allows the exploration of several

possibilities in microstructural design such as: (i) analysis of hybrid composite mi-

crostructures, (ii) reproduction of multi-axial stress states and calculation of fail-

ure envelopes (Naya et al., 2017a), (iii) quantification of the effect of fiber volume

fraction on ply properties. The coupling of this numerical tool with optimization

algorithms will allow the identification of optimal microstructural configurations.

Nevertheless, further validation of these techniques is required to ascertain numeri-

cal results and determine the reliability of the numerical tool.
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5A Numerical Framework for
Small Scale Bridging
Fracture Processes

5.1 Introduction

One of the main drawbacks limiting a wider use of fiber-reinforced polymer (FRP)

composite materials is the difficulty to predict their mechanical behavior under ser-

vice conditions due to the complex deformation and failure mechanisms that very

often lead to well-known black metal design guidelines. Such complexity level is

experimentally revealed at different length scales in which a FRP material is hierar-

chically organized, namely the ply (10 ∼ 100 µm), the laminate (1 ∼ 5 mm) and the

structural component (∼ 1 m) (Llorca et al., 2011). For instance, at the microlevel,

intralaminar failure occurs due to a competition of mechanisms, triggered by the lo-

cal stress state in the ply, between matrix cracking and shear banding, fiber brittle

failure as well as fiber/matrix interface debonding, as shown in Chapter 4. At that

length scale, the properties of the constituents as well as the spatial distribution

of the reinforcement play the critical role in the fracture process although defects

generated from manufacturing, such as voids, interface debonds or resin pockets,

may alter this situation. These intralaminar ply mechanisms are well described

in the literature and have helped considerably to develop physically based com-

putational homogenization models (Pinho et al., 2009; Canal et al., 2012b). Such

kind of models rely on the existence of a statistically representative volume element

(RVE) whose microstructure can be generated synthetically including all relevant

failure mechanisms observed in the real material (Vaughan and McCarthy, 2010).

The techniques were successfully applied to predict ply strength of unidirectional
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plies subjected to homogeneous stress states including tension, compression, shear

(González and Llorca, 2007c; Totry et al., 2010), and their combinations in a failure

locus (Totry et al., 2008a), including the effect of environmental conditions (Naya

et al., 2017a). To avoid artificial damage and boundary layer effects, most of the

computational homogenization models make use of periodic RVEs applying homo-

geneous stress states through periodic boundary conditions imposed by constraining

the relative displacements of pairs of opposite faces in the model.

The ability of computational homogenization models based on periodic RVEs

relies on good idealizations of the current material microstructure as well as consti-

tutive models of the constituents to explicitly reproduce damage onset and propa-

gation and their continuous interaction (Segurado and Llorca, 2002). On the other

hand, their major drawback is the inability to describe material softening after the

occurrence of strain localization. To overcome such limitation, models including

detailed descriptions of the microstructure of the material in the fracture process

zone (FPZ) can be used to deal with localized crack propagation problems where

material toughness determination is required. The region out of the fracture pro-

cess zone in embedded models is formed by a homogenized material with equivalent

properties of the overall elastic behavior of the composite. Embedded models were

successfully applied in the past to simulate fracture of unidirectional plies from a

micromechanical perspective including matrix plasticity, fiber bridging and pull out

in Ti/SiC composites (González and Llorca, 2006, 2007c) and fiber/matrix interface

debonding with ductile tearing of matrix ligaments (Canal et al., 2012b). How-

ever, an important problem when dealing with embedded cells is the inadequacy

to represent at the same discretization level, fracture mechanisms spanning differ-

ent length scales. For instance, the characteristic fracture process length for brittle

epoxy matrices is lc ≈ 20 µm while the case of fiber toughening effects to fiber

bridging cross-overs is lc ≈ 1 − 5 mm (Bao and Suo, 1992). Considering these im-

portant drawbacks, embedded models can be used to infer the shape of softening

laws in composite materials based on the adequate description of the individual

constituents failure mechanisms and their interaction during the propagation of a

crack.

In this chapter, a numerical methodology based on computational homogeniza-

tion to analyze fracture in heterogeneous materials under small scale bridging (SSB)

conditions is presented. Due to the complexity of the problem, the methodology is

illustrated to study the 2-D propagation of a crack in a fiber reinforced unidirec-

94



5. A Numerical Framework for Small Scale Bridging Fracture Processes

tional ply, including the fiber/matrix interface debonding and the ductile tearing of

the matrix ligaments between fibers as energy dissipation mechanisms. This crack

propagation problem is also known as the intralaminar crack propagation under

transverse tension characterized by the fracture toughness G2+. The bidimensional

formulation of the problem impedes the inclusion of higher length scale toughening

mechanisms, as for instance, fiber bridging due to the lack of parallelism between

fibers, so the material toughness and R-curve behavior obtained should be under-

stood as lower bounds or initiation values rather than propagation over a finite

crack length of some mm (Pinho et al., 2009). Homogenized softening laws for the

crack propagation problem in a unidirectional ply are presented for a wide range

of micromechanical parameters including constituent properties as the fiber/matrix

interface and matrix plastic/damage behavior.

The chapter is organized as follows. The description of the framework is carried

out in Section 5.2, where the embedded micromechanical model under small scale

bridging and the corresponding homogeneous cohesive crack approach are described.

In Section 5.3, the models are applied to determine the R-curve behavior and the

energy equivalent softening laws for a baseline set of micromechanical parameters.

The ability of computational micromechanics to address the influence of the mi-

cromechanical properties of the constituents is discussed in Section 5.4, whereas the

final remarks and conclusions are drawn in Section 5.5. The work presented in this

chapter was published in (Herráez et al., 2018b).

5.2 Methodology

5.2.1 An embedded cell model for crack propagation

A simulation methodology was developed to infer the R-curve behavior and in-

vestigate softening laws based on computational micromechanics to address crack

propagation problems in unidirectional fiber reinforced composites. The model-

ing strategy was applied to study the intralaminar transverse fracture toughness

of a unidirectional carbon/epoxy system AS4/8552 using as inputs the microme-

chanical parameters and the reinforcement distribution (Herráez et al., 2015; Naya

et al., 2017a). The model was only applied to study the bidimensional crack prop-

agation assuming the matrix tearing and fiber/matrix interface debonding as the

dominant energy dissipation mechanisms. The crack front is assumed to be parallel

to the fiber direction, namely x1, and running in the plane x2 − x3 as shown in
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Embedded cell

Crack

Homogeneous medium

Crack tip

Matrix

Fiber

Interface

J-integral contour

Figure 5.1: Schematic view of the model showing the displacement field (LEFM),
the detail of the fibers distribution, J-integral contour Γ, FEM mesh, and cohesive
interface.

Figure 5.1. The model includes the microstructure of the material, but, only in

a small region close to the crack tip known as fracture process zone (FPZ). This

detailed region of size ` × h = 1500 × 100 µm2 is embedded in a larger rectan-

gular area L × H = 76800 × 19200 µm2. This methodology allows the isolation

of the crack propagation problem from any global specimen geometry effect. The

microstructure used for the embedded region corresponds to a homogeneous disper-

sion of parallel fibers aligned in the x1 direction, being the fiber volume fraction

Vf = 65%, see Figure 5.1. A typical embedded model contains over 2400 fibers with

diameter 7.1 ± 0.2 µm, representative of AS4 carbon fiber as shown in Table 2.4.

The rest of the model, out of the embedded region, was treated as a homogeneous

transversely isotropic elastic solid whose behavior is given by any suitable homog-

enization scheme from the elastic constants of the constituents, fibers and matrix,
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Table 5.1: Elastic properties of the AS4/8552 composite with Vf = 65% obtained
through RVE computational homogenization.

E11 E22 ν12 ν23 G12 G23

[GPa] [GPa] [GPa] [GPa]

152.3 7.17 0.32 0.48 4.1 2.42

and the volume fraction of reinforcement. The two regions of the model share the

bounding nodes, so the displacement continuity is guaranteed. The width of the

embedded model, h = 100 µm, was large enough to ensure the effect of the tran-

sition from heterogeneous to homogeneous solids induced negligible effects in the

crack propagation process. The mesh size was set to 1 µm in the embedded region

and it progressively grows along the homogeneous region up to 480 µm at the outer

edges. This discretization level ensures good representation of stress fields at the mi-

crolevel while maintaining acceptable computation times. A typical baseline model

is formed by 385,000 elements. Simulations were carried out using Abaqus/Standard

with the implicit dynamics solving scheme using quasi-static solution settings within

the framework of the finite deformations theory with the initial unstressed state as

the reference one.

The whole model was discretized using a lagrangian mesh with finite elements.

The matrix, fibers and the homogenized region were modeled with 4-node fully inte-

grated quadrilateral isoparametric plane strain elements (CPE4) in Abaqus (Simu-

lia, 2013). The fiber/matrix interface debonding was simulated with 4-node cohesive

isoparametric elements (COH2D4) inserted at each of the individual fiber/matrix

interfaces (Camanho and Davila, 2002; Turon et al., 2006).

The constitutive models employed by the fibers, fiber/matrix interfaces and ma-

trix are the same as in Chapter 4 with the same properties. AS4 carbon fibers are

linear elastic transversely isotropic solids. The interfaces follow a traction-separation

cohesive law with linear softening with the properties shown in Table 4.2. The poly-

mer matrix is modeled through a damaged/plasticity model brittle under uniaxial

tension, but plastic under confined loading, see Table 4.3 and Table 4.4. The elas-

tic properties of the homogenized composite region with Vf = 65% are collected in

Table 5.1.

The model assumes that small scale bridging (SSB) conditions prevail, therefore,

even if the stress field in the fracture process zone is affected by plasticity and/or
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damage, the overall stress in that area is dominated by the singular term r−1/2

of the linear elastic fracture mechanics (LEFM). This condition is fulfilled if the

characteristic length of the process zone, lc, is small as compared with the overall

dimensions of the model (lc � L,H, Hui and Ruina (1995)) and the crack tip is

far from the model edges. Under such conditions, the KI displacement field can

be imposed in the outer region of the model to simulate a crack loaded in mode

I conditions. This methodology is also known as boundary layer approach and is

found in the literature for the analysis of the initiation and propagation of ductile

cracks (Hütter, 2013; Hossain et al., 2014). For a transversely isotropic material

under plane strain conditions (ε11 = 0), the displacement field applied to the outer

boundaries ~u = (u2, u3) is given by

u2

u3

 =
KI

2G23

·
√

r

2π
· (κ− cos θ)

cos θ
2

sin θ
2

 (5.1)

where r and θ stand for the polar coordinates assuming the crack tip as the origin,

KI is the stress intensity factor in mode I, and κ = 1.70 and G23 = 2.42 GPa are

material constants obtained from elastic properties of the homogenized material ob-

tained from Table 5.1. The readers are referred to Appendix B for a more detailed

description of the parameters used under plain strain conditions and the demonstra-

tion of eq. 5.1. Free stress conditions are imposed to the crack edges for θ = ±π,

see Figure 5.1.

The model is loaded by increasing the stress intensity factor, KI , until crack

propagation (∆a) is observed. In most of the boundary layer models, the outer

region where the displacement field is applied is significantly larger than the length

of the propagated crack (L � ∆a), and thus, updating the displacement field due

to crack tip propagation is not required. However, if the outer region is not large

enough, a mismatch between the stress intensity factor imposed through the bound-

ary conditions and the stress intensity factor measured in the vicinity of the crack

tip is observed. This effect was already reported by Hossain et al. (2014). To solve

this issue, simulations were run in an incremental way by stopping the computation

at a given step, i, for a given specified crack increment, namely ∆ai. Then, bound-

ary conditions were updated assuming that the origin for the displacement field is

translated in the x2 direction the same crack increment ∆ai, being the mechanical

fields imported from the previous step. More details about the differences between

both approaches will be summarized in the next sections.
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It should be remarked that the definition of the crack tip is somewhat arbitrary

but should lie between the appearance of the first damaged element (D > 0) and the

region where all elements are completely damaged, corresponding to the initiation

of a physical crack (stress free surface). In this work, the first definition is used

and the crack tip position is tracked by the direct search of the furthest damaged

element in the matrix or fiber/matrix interface in the embedded cell.

The accuracy of the boundary layer approach is checked by the direct computa-

tion of the J-integral along the contour Γ of the embedded region of size ` × h. as

shown in Figure 5.1. The J-integral is evaluated from the outputs of the mechanical

fields obtained with the finite element model according to

J =

∫
Γ

(
W dx3 − ~t ·

∂~u

∂x2

ds

)
(5.2)

where W stands for the strain energy, ~u for the displacement field, and ~t = σ~n the

traction vector assuming ~n is the vector normal to the Γ contour. Under small scale

bridging conditions, the stress intensity factor, KI , imposed through the boundary

layer approach and the J-integral evaluated should fulfill the Irwin relation and,

therefore, J(∆a) = R(∆a) = K2
I (∆a)/E∗ where E∗ is the effective modulus in the

transverse plane x2 − x3 under plain strain conditions, E∗ = E2/(1− ν12ν21).

A direct comparison of the R(∆a) results obtained with the boundary layer

approach is also performed by means of a full-scale embedded cell model. In this case,

the heterogeneous region containing the microstructure of the material of size `× h
is embedded in a larger structure subjected to far field mechanical loads, Figure 5.2.

To simplify the problem, the structure used corresponded with a single-edge notch

test (SENT) of a panel of size L′×H ′ = 45×180 mm2 subjected to uniaxial tension

σ∞ in the x3 direction. The initial crack length was a0 = 0.05 · L′ = 2.27 mm.

The stress intensity factor is directly computed following the well known expression

for the SENT configuration KI = 1.12σ
√
π a where a is the current crack length.

The J-integral was also computed through the contour Γ containing the embedded

region as described previously.

Simulation time of the SSB model was about 12 hours for the baseline case

(400,000 elements), whereas the SENT model was larger (500,000 elements) and

took 8 hours. However, the SENT model became unstable when the steady-state

regime was reached and the simulation stopped (∆a = 900 µm), while the SSB

approach remained stable during the whole process going up to ∆a = 1400 µm,
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Mesh transition:

Pre-crack: 

Embedded cell

Crack tip

Figure 5.2: SENT (single-edge notch test) full-scale model with an initial crack a0 =
2.27 mm (a0/L

′ ≈ 0.05) subjected to far-field stress σ∞3 . Details of the embedded
micromechanical model and crack tip.

see Figure 5.4. Simulations were performed using 10 cores with an Intel® Xeon®

Processor E5-2680.

5.2.2 Equivalent homogeneous cohesive zone model

A homogeneous finite element model in which the fracture process zone is lumped

into a single cohesive crack in the x3 = 0 plane was generated in order to evalu-

ate the response of physically sound softening laws mimicking the response of the

micromechanical model, Figure 5.3. In this case, the model is constructed of two

homogeneous transversely isotropic elastic solids under plain strain conditions with

the elastic properties reported in Table 5.1 tied to a zero-thickness layer of cohesive
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Figure 5.3: Sketch of the equivalent cohesive model for crack propagation, mode I
displacement field is imposed along the boundaries of the model, and detail of the
vertical stress contour field (σ3) of the homogeneous cohesive crack model along the
fracture process zone with a linear-softening traction-separation law.

elements. The total dimensions are the same as those of the embedded microme-

chanical model, L × H, using the same boundary conditions representing the KI

displacement field of linear elastic fracture mechanics, eq. 5.1. The softening law,

σ(w), introduced in the cohesive elements (σ stress vs. w crack opening displace-

ment) is defined by the transverse tensile strength, Yt = max σ(w), toughness,

Gf =
∫∞

0
σ(w) dw, and its softening shape (bilinear, exponential, etc.). As in the

case of the elastic constants, the strength of the material, Yt, was inferred using

periodic representative volume elements through the strategy shown in Chapter 4.

The remaining mechanical parameters are selected to reproduce the same R(∆a)

response, in an energy release equivalence, as the embedded model containing the

explicit representation of the material microstructure.
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5.3 Results

5.3.1 Fracture mechanisms and R-curve behavior

The embedded cell methodology just described was applied to determine the R(∆a)

curve for the intralaminar transverse crack propagation in AS4/8552 carbon/epoxy

UD composite system. Figure 5.4 represents the R(∆a) curves obtained for four

different random realizations, namely A, B, C and D, keeping constant the volume

fraction of fiber reinforcement Vf = 65% and micromechanical parameters of the

constituents. As previously mentioned, the crack tip, and therefore, the definition

of the crack length extension ∆a, is localized by the appearance of the first damaged

element in the form of, either, matrix damage or fiber/matrix interface debonding

(D > 0). The scatter obtained in the simulations is due to the arrangement of the

fibers within the fracture process zone. The shape of the curve is similar in the four

cases and is a direct consequence of the fracture mechanisms included in the simula-

tions. Firstly, crack propagation was triggered for low energy values Ginit
2+ ≈ 20 J/m2

and this effect was associated with the generation of the first fiber/matrix debonds

and/or matrix failure. Secondly, the crack progresses showing bridging by the matrix

ligaments between debonded fibers that are subjected to severe plastic deformation

and final ductile tearing. Once the dissipation mechanisms are exhausted, the R-

curve progresses to an asymptotic value G2+ ≈ 50 J/m2 that can be considered as

the intralaminar transverse fracture energy of the material, see Figure 5.4.

The fracture process zone can be visualized easily from the fracture mechanisms

shown in Figure 5.5 for two different points, I and II, defined in the R-curve in

Figure 5.4. An approximate fracture process zone length of lc ≈ 400 µm is in-

ferred from these results which is consistent with the crack extension necessary to

fully propagate a physical crack after the remaining matrix ligaments are totally

broken, Figure 5.4. Under such circumstances, the fracture process zone continues

its propagation in a self-similar way and the stress field translates progressively in

the x2 direction. It should be mentioned that the length of the fracture process

zone is much smaller than the overall dimensions of the model (L ≈ 192 lc) which

is a mandatory requirement to represent the small scale bridging conditions. Such

model, with a size L and crack extension ∆a, also ensures that the relative error be-

tween the stress intensity factor introduced through the boundary conditions using

eq. 5.1 and the real value measured through the J-integral using eq. 5.2 around the

Γ contour in the embedded region differs by less than 3%.
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Figure 5.4: R-curve envelope obtained from four different equivalent realizations
using the embedded boundary layer approach. Results with the full-scale embedded
model using the SENT configuration included for comparison.

Figure 5.4 also shows the R(∆a) curve obtained with the full-scale embedded

model using the SENT specimen configuration previously described. The results in

terms of energy dissipated were very similar to those obtained with the boundary

layer approach and, thus, demonstrating that the small scale bridging conditions

were fulfilled.

The stress field σ3 along the crack plane x3 = 0 in the fracture process zone is

plotted in Figure 5.6 when the crack has propagated until ∆a = 860 µm from the

initial position and the applied stress intensity factor is KI = 0.66 MPa
√

m. The

σ3(x2) field in the fracture process zone was obtained by the projection of those

Gauss points stresses corresponding to the finite elements running through the ini-

tial crack plane (x3 = 0). Thus, the scatter observed in the stress variation is a

consequence of the different materials (fibers and matrix) and their spatial distribu-

tion in the embedded region. Ahead of the crack tip, the stress shows an excellent

agreement with the LEFM singular field (r−1/2) for the given stress intensity factor

KI = 0.66 MPa
√

m confirming the adequacy of the imposed boundary conditions to

simulate realistic small scale bridging conditions (Anderson, 2005). The results of

the full-scale embedded model differ from those of the small scale only far from the
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Figure 5.5: Snap-shots of the fracture mechanisms obtained with the embedded
micromechanical model for the loading points I a) and II b) shown in the R(∆a) in
Figure 5.4.

crack tip when the far-field asymptotic stress σ∞3 ≈ 5 MPa is achieved. The stress

solution for the SENT and boundary layer models should be similar in a region close

to the crack tip, where KI dominates. Out of this region, autonomous zone, LEFM

solution (first term of the series expansion) diverges from the SENT solution.

5.3.2 Representativeness of the embedded cell model

The baseline results of the R(∆a) curves shown in Figure 5.4 were obtained assuming

a relative size of the fracture process zone with respect to the overall dimensions

of the model of L ≈ 192 lc (lc ≈ 400 µm) to ensure that the small scale bridging

conditions are satisfied, as shown in Figure 5.6. Such results were obtained using

the procedure described in the previous section by updating the BC. After a small

increment of crack extension (10 ∼ 25 µm), the KI displacement field boundary

conditions were updated assuming that the origin for the crack tip in eq. 5.1 is

translated by the same amount in the x2 direction. The procedure is then repeated

for every crack increment after the R-curve achieved the steady-state conditions.
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Figure 5.6: σ3(x2) stress field for small scale bridging (SSB) and full-scale (SENT)
models for crack tip propagation of ∆a = 860 µm and a stress intensity factor
applied of KI = 0.66 MPa

√
m, corresponding to point II of the R-curves shown

in Figure 5.4. Stress predictions based on linear elastic fracture mechanics theory
included for comparison (LEFM). The length of the embedded cell is l = 1000 µm.
Note the linear relation of the LEFM solution in the log-log scale plot.

The relative size of the model to the fracture process zone length L/lc and the

methodology for crack propagation deserve some additional comments. The effect

of the approach updating the BC is analyzed through a new set of simulations per-

formed with L/lc = 12, 48 and 192, but without updating the boundary conditions

during crack propagation. The results summarized in Figure 5.7a are compared with

the baseline results previously described (see Figure 5.4). The R-curve obtained for

L/lc = 12 matched the baseline results only for very small crack propagations as

the KI imposed through the boundary conditions and the real values at the crack

tip computed through the J-integral diverged progressively. Similar results were

obtained for the larger model with L/lc = 192 but data diverged after a larger

crack propagation ∆a ≈ 300 µm. Hence, the model size relative to the fracture

process zone length L/lc needs to be previously checked if boundary conditions are

not intended to be updated. On the other hand, Figure 5.7b shows the results of
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Figure 5.7: a) R(∆a) curves obtained without updating the boundary conditions
for different relative sizes of the model L/lc = 12, 48, 192, b) R(∆a) curves obtained
updating the boundary conditions for different relative sizes of the model L/lc = 12,
48 and 192. Baseline simulations results included for comparison.

the R-curves using the boundary conditions updated with the same relative sizes

of the model L/lc = 12, 48 and 192. Results obtained for L/lc = 48 were similar

to the baseline dimensions L/lc = 192, but diverged for L/lc = 12. Thus, the rel-

ative model size of L/lc = 192 was accurate enough to ensure small scale bridging

conditions were fulfilled.

5.3.3 Homogenized cohesive laws

The homogenized model lumping the fracture process zone in a single layer of cohe-

sive elements presented in Section 5.2.2 is now applied to simulate the crack prop-

agation problem. The traction vs. separation law σ(w) is usually defined by means

of the maximum stress dictating the onset of damage, Yt, the fracture energy, G2+,

and the shape of the curve. The maximum stress Yt = 50 MPa was determined from

the numerical simulation of a model based on a periodic representative volume ele-

ment (RVE) of the microstructure subjected to uniaxial transverse tension loading

for the same micromechanical properties of the constituents presented previously as

detailed in Chapter 4. The fracture toughness G2+ = 50 J/m2 was obtained from

the embedded model R(∆a) curve when steady-state conditions are achieved. Even

if the two previous conditions are fulfilled, the shape of the σ(w) curve presents

an additional degree of freedom related with the shape of the R-curve. To illus-

trate such effect, a standard linear-softening traction vs. separation law defined as
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σ(w) = Yt · (1−w/wc) with wc = 2G2+/Yt is used as shown in Figure 5.8a. The re-

sults of the homogenized cohesive model are presented in Figure 5.8b. Naturally, the

results match perfectly the steady-state toughness of the embedded model but the

homogenized crack resistance curve does not fit the embedded cell model fracture

response in the whole ∆a range.

The results in Figure 5.8 also include the R-curve derived by the direct integra-

tion of the cohesive law, R(∆a) =
∫ ∆a

0
σ(x) dx, assuming a linear relation between

the crack length extension, ∆a, and the crack opening displacement, w = wc/lc ∆a,

(Foote et al., 1986; Sørensen and Jacobsen, 1998) as,

R(∆a) =


R(∆a) = G2+

∆a
lc

(
2− ∆a

lc

)
∆a < lc

R(∆a) = G2+ ∆a ≥ lc

(5.3)

where lc is the fracture process length and it follows the well-known relation found

in the literature, lc = γ GE/σ2, with 0 < γ ≤ 1 depending on the analytical model

selected (Dugdale, 1960; Hillerborg et al., 1976; Bao and Suo, 1992). Thus, once

∆a = lc, the steady-state toughness R = G2+ is achieved. The results obtained by

the direct integration of the cohesive law assuming a linear relation for the crack

opening displacement match the results obtained with the homogeneous cohesive

model corroborating the accuracy of this hypothesis (Figure 5.8b).

A non-conventional cohesive law is required to improve the fitting of the em-

bedded model R-curve. In this work, different approaches were attempted to ob-

tain an approximate cohesive law that would result in the R-curve obtained by

means of micromechanics, such as trapezoidal (Irwin, 1957; Dugdale, 1960; Bilby

et al., 1963; Tada et al., 2000), with linear hardening (Budiansky et al., 1988; Suo

et al., 1992), following a power law (Cox, 1993), based upon phenomenological dam-

age mechanisms (Llorca and Elices, 1990), bilinear softening (Dávila et al., 2009;

Morel et al., 2010) or more complex linear piecewise behavior (Sills and Thouless,

2015). A different strategy was presented by Hong and Kim (2003) which consists

of extracting an arbitrary cohesive law from the elastic far-fields of the embedded

micromechanical model through the field projection method (FPM), nevertheless,

linear-softening cohesive laws will be assumed in this work as they provide reasonable

balance between representativity and easiness of implementation in a constitutive

model (CDM, traction-separation law...).
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Figure 5.8: a) Linear and bilinear cohesive laws for homogenized models, and b)
comparison of the R(∆a) curves obtained with the homogenized cohesive model
using linear and bilinear laws with the micromechanics embedded cell approach.
Analytical results obtained by direct integration of the cohesive laws also included
for comparison.

Two well differentiated cohesive zones and fracture energies are observed in the

R-curves (see Figure 5.4). Hence, a bilinear softening law based on the work of

Dávila et al. (2009), is proposed in order to capture the fracture process more accu-

rately than the simple linear softening law previously shown. The bilinear softening

law is described through the superposition of two linear cohesive laws, namely BCL1

and BCL2 (bilinear cohesive law, BCL), with complimentary strength and fracture

toughness values, Figure 5.9a. The strength and toughness of the two cohesive laws

are defined as fractions of Yt and G2+, respectively, as σc1 = nYt, σc2 = (1 − n)Yt

and G1 = mG2+ and G2 = (1−m)G2+. Following this approach, the strength and

toughness are directly obtained by the summation of the individual contributions

of the linear cohesive laws as Yt = σc1 + σc2 and G2+ = G1 + G2. The factors

n and m range in the interval (0, 1) and are used to control the shape of the bi-

linear cohesive law. They can be derived by least square minimization using the

R(∆a) curves obtained with the micromechanical model. However, the minimiza-

tion process through the homogenized finite element model is computationally very

expensive and simplified expressions as eq. 5.3 are very valuable for fitting purposes.

In this work, a bilinear piecewise relation for the direct integration of the cohesive

law as in Figure 5.9b is proposed, according to
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Figure 5.9: Schematics representation of: a) two linear softening cohesive laws and
their superposition adapted from Dávila et al. (2009), and b) crack-separation pro-
file: hypothesis and FEM results.

w(∆a) =


wc
lc

∆a ∆a < lc1

m
n
wc
lc

(∆a− lc1) + wc
lc
lc1 ∆a ≥ lc1

(5.4)

where lc1 = lc · m/n and lc2 = lc · (m/n + (n − m)/(m(1 − n))) are the fracture

process zone length associated with BCL1 and BCL2, respectively. The integration

of the traction-separation laws along the observed crack-separation profile yields the

R-curve expression in eq. 5.5.

R(∆a) =


R1(∆a) +RA

2 (∆a) ∆a < lc1

RT
1 +RA

2 (lc1) +RB
2 (∆a) lc1 ≤ ∆a < lc2

RT
1 +RT

2 = G2+ ∆a ≥ lc2

(5.5)
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where,

R1(∆a) = n
∆a

lc

(
2− n

m

∆a

lc

)
·G2+ (5.6a)

RA
2 (∆a) = (1− n)

∆a

lc

(
2− 1− n

1−m
∆a

lc

)
·G2+ (5.6b)

RB
2 (∆a) = (1− n)

m

n

(∆a− lc1)
lc

(
2(1− C)− C (∆a− lc1)

lc

)
·G2+ (5.6c)

RT
1 = R1(lc1) = m ·G2+ (5.6d)

RT
2 = RA

2 (lc1) +RB
2 (lc2) = (1−m) ·G2+ (5.6e)

with C = (m · (1 − n))/(n · (1 − m)). In these equations, m ≤ n, otherwise the

values must be switched as m := 1 − m and n := 1 − n. The coefficients m and

n of the former expressions are determined by least squares fitting of the R-curves

obtained with the embedded micromechanical model (see baseline results in Ta-

ble 5.2). The final cohesive law is presented in Figure 5.8a and the results of the

R-curves obtained with the homogenized cohesive model and with the direct inte-

gration of the cohesive law are compared in Figure 5.8b. The difference between

both approaches, homogenized cohesive model and direct integration of the cohe-

sive law, are almost negligible indicating the bilinear law approximation for the

crack opening displacements is very accurate. Not surprisingly, the results obtained

with the bilinear cohesive law clearly fit the predicted R-curves indicating the good

representativeness of the fracture process zone by means of the bilinear softening

law.

The advantage of the multi-mechanism softening law approach presented in this

work is the ability to provide a direct quantification of the energy partition between

mechanisms. For instance, the initial brittle behavior of the fiber/matrix interface

can be endorsed to the first linear cohesive law, being the fracture process zone length

and fracture energy lc1 = 61 µm and G1 = 25.2 J/m2. This fracture process zone

length is consistent with the region along which fiber/matrix debonding takes place,

close to the crack tip, as observed in Figure 5.5a. On the other hand, the behavior

due to the plastic/damage tearing of the matrix ligaments between debonded fibers

is associated to the second cohesive law in which the fracture process length and

fracture energy were lc2 = 664 µm and G2 = 24.8 J/m2, respectively, see Figure 5.5b.

Thus, if steady-state propagation conditions are fulfilled, then the energy partition
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Table 5.2: Details of the cohesive laws obtained by least-square fitting of the R(∆a)
curves obtained with the embedded micromechanical model.

Gc Gm m n lc1 lc2 G1 G2 G1/G2

[J/m2] [J/m2] [µm] [µm] [J/m2] [J/m2]

2 90 0.505 0.873 61 664 25.2 24.8 1.016

8 90 0.650 0.870 141 634 58.5 31.5 1.857

20 90 0.635 0.870 276 1354 114.3 65.7 1.739

2 135 0.330 0.770 56 812 20.5 41.5 0.494

2 200 0.098 0.452 38 1180 8.1 74.9 0.108

between mechanisms for this case G1/G2 = 1.016 and energy dissipation is equally

attributed to both aforementioned mechanisms.

5.4 Discussion

5.4.1 Effect of the constituents properties

One of the main benefits of computational micromechanics is the ability to predict

the mechanical behavior of the composite material when the properties of the con-

stituents are changed, and, thus, enabling the virtual screening of the material prior

to its manufacturing. In this section, the model described previously is applied to

ascertain the effect of the constituents, mainly the toughness of the fiber/matrix in-

terface Gc, and the toughness of the matrix Gm, on the final homogenized behavior

of the UD composite material1. Three different realizations with the same volume

fraction Vf = 65% were carried out using a set of values for Gc = 1, 2, 4, 6, 8, 10

and 20 J/m2, and matrix, Gm = 40, 90, 135, 200 and 300 J/m2. The corresponding

results of the R-curves are plotted in Figure 5.10b and d, respectively, being the

baseline values those obtained with Gc = 2 J/m2 and Gm =90 J/m2 (plotted in

light blue in the graph). In addition, the results for the steady-state toughness G2+

as a function of Gc and Gm are shown in Figure 5.10a and c including also the

corresponding values of the fracture process zone length, lc, obtained by the direct

observation of the numerical model.

1In this chapter Gc corresponds to the fracture energy of the interface under mode I (Gc
t),

whereas Gm is the fracture energy of the matrix under longitudinal tension (Gm
t ).
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Figure 5.10: Steady-state toughness G2+, G1 and G2 energy contributions, and frac-
ture process length lc for: a) interface toughness variations Gc, c) matrix toughness
variations Gm. R-curves for: b) interface toughness variations, d) matrix tough-
ness variations. The curves were obtained fitting the numerical R-curves with the
bilinear cohesive law (eq. 5.5).

The results indicate that a tough interface is critical to enhance energy dissi-

pation (Barthelat et al., 2007), specially in the first stages of the process for small

crack increments (∆a ≤ 50 µm), as observed in Figure 5.10b. This effect can be

attributed to the onset of damage that is triggered by fiber/matrix decohesion ahead

of the notch tip. If fiber/matrix interface debonding is delayed, because of the higher

Gc, then, more volume of material is able to contribute to dissipate energy in the

neighborhood of the crack tip enhancing the fracture energy, and not only those

fibers close to the crack plane. Improving the interface toughness Gc from 2 to 20

J/m2 produced an increase of the steady-state fracture energy from 50 to 175 J/m2
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while the length of the fracture process zone changed from ∼ 400 µm to ∼ 1200 µm,

as shown in Figure 5.10a. The simulations also point out that the influence of the

matrix toughness on the steady-state fracture energy, G2+, is not as effective as in

the case of the fiber/matrix interface debonding, Figure 5.10c. For instance, chang-

ing the matrix toughness Gm from 90 to 300 J/m2 produces an improvement from

50 to 110 J/m2 and the fracture process zone length lc increases from 400 to 1200

µm. This effect is due to the damaged matrix ligaments that are less effective to

shield the crack tip, so the effectiveness of improving the matrix toughness is only

observed for larger crack propagation as compared with the fiber/matrix interface.

Another major benefit of computational micromechanics is the ability to provide

the homogenized constitutive behavior of the composite material that can be used

to study its behavior at an upper length scale. This is the case, for instance, of the

cohesive laws obtained by the least squares fitting the R-curves computed with the

embedded micromechanical model. Figure 5.11b shows the results of such cohesive

laws obtained for the baseline properties and for interface toughness enhancements

of Gc = 8 and 20 J/m2, and matrix Gm = 135 and 200 J/m2, fitting the overall

behavior presented in Figure 5.11a.

The direct inspection of the cohesive laws obtained deserves additional com-

ments. Firstly, the strength values of the cohesive laws are kept constant and equal

to the transverse tensile strength of the material (Yt = 50 MPa), as obtained from

the analysis of periodic RVEs, Figure 5.11b. It should be argued that the effect of

the fiber/matrix interface and matrix toughness on the transverse tensile strength of

the UD composite material is negligible as this value is essentially controlled by the

fiber/matrix interface strength that triggers the brittle final failure of the composite

(Naya et al., 2017a). Secondly, the cohesive law is clearly modified by changing

the values of the fiber/matrix interface toughness, Figure 5.11b. This modification

allows the material to sustain higher stress levels, specially close to the crack tip,

and therefore, dissipating additional energy through the neighboring matrix liga-

ments between debonded fibers. The effect aforementioned is also corroborated by

observation of the deformed configurations close to the crack tip in Figure 5.11f and

g, and the comparison with the baseline configuration presented in Figure 5.5. If

fiber/matrix toughness is enhanced, e.g. Gc = 20 J/m2, more fiber debonds are

observed around the crack tip while in the case of the baseline configuration, they

are localized close to the fracture plane (x3 = 0) not affecting significantly the neigh-

boring fibers. In such case, the fracture process zone of the BCL1, associated with
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fiber/matrix debonding mechanisms, shows a clear increase from 61 to 276 µm, be-

ing the energy dissipated under steady-state conditions 3.6 times the baseline value,

Table 5.2, and Figure 5.11g.

If the matrix toughness is improved, Gm = 200 J/m2, the energy dissipated in the

crack tip region due to fiber/matrix interface debonding is even lower, G1 = 8.1 J/m2

as compared with the G1 = 25.2 J/m2 obtained with the baseline material, and the

ratio between both mechanisms is considerably low G1/G2 = 0.108. For this reason,

the R-curves show a significant progressive increase from the low values observed

for the initiation to the final steady-state regime, Figure 5.11a. In these cases, the

crack length should be very large (∼ 1200 µm) to fully exhaust this mechanism and

attain the steady-state conditions.

5.4.2 Effect of the fiber volume fraction

The effect of the fiber volume fraction, Vf , on the steady-state toughness is analyzed

by testing embedded cells with a different amount of fibers. In Figure 5.12a, it is

shown that a composite with a lower fraction of reinforcement is able to dissipate

more energy, for instance, for Vf = 50%, the increase in toughness compared to the

reference (Vf = 65%) is ∼ 15 J/m2 (+30%). Similarly, if the fiber volume fraction is

increased up to 70%, G2+ drops ∼ 5 J/m2 (−10%). This effect is explained through

the size of the matrix ligaments between debonded fibers, as the fiber volume fraction

increases, the distance between them becomes smaller, such that the load sustained

by the matrix is lower (Ghayoor et al., 2018).

The fiber arrangement that maximizes the size of the matrix ligaments is the

hexagonal packing which enables virtual volume fractions up to 90%. This arrange-

ment provides an upper bound for the intralaminar toughness, for instance, for

the 50% fiber reinforcement case, G2+ rises up to 90 J/m2 (+80%), as shown in

Figure 5.12a. The load level around the crack tip with the hexagonal packing (Fig-

ure 5.12b) is notably higher than with the random dispersion of fibers (Figure 5.12c)

inducing more diffused damage during crack propagation. In similar fashion to the

present work, the effect of fiber dispersion was considered for toughness prediction

in brittle particle-reinforced ceramics in the analytical model developed by Li and

Zhou (2013).
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Figure 5.11: a) R-curves obtained with the embedded micromechanical model for
baseline properties showing the effect of interface toughness Gc = 2, 8 and 20 J/m2

and matrix toughness Gm = 90, 135 and 200 J/m2. b) Bilinear cohesive laws ob-
tained by least-squares fitting of the R-curves obtained with the embedded mi-
cromechanical model. Screenshots of the fracture process zone indicated in a): c)
Gc = 2 J/m2 (baseline), d) Gc = 20 J/m2, e) Gm = 200 J/m2. Details of the process
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5.5 Concluding remarks

The fracture behavior of unidirectional fiber reinforced composites and the associ-

ated damage mechanisms were studied by means of computational micromechanics.

The results were applied to a UD AS4/8552 carbon epoxy composite, this system

is widely employed in structural applications in aerospace applications. A bidi-

mensional modeling scheme was used to determine the intraply fracture behavior

when a crack grows in the x2-direction perpendicular to the fibers only account-

ing for fiber/matrix debonding and matrix plastic/damage mechanisms as the main

contributions to the dissipation and fracture mechanisms. Other important effects

attributed to larger scale fiber bridging were not taken into account in the model

as the characteristic length associated to them, of a few mm in length, is much

larger than the close tip mechanisms studied in this work (lc ≈ 400 µm for the

baseline configuration). Thus, the steady-state fracture toughness obtained follow-

ing the methodology described in this chapter should be understood as the crack

tip toughness which is representative of the effects operating at the micro scale.

Representative crack propagation toughness values for AS4/8552 were obtained ex-

perimentally through DCB tests (double cantilever beam) and are in the order of

250 ∼ 300 J/m2.

The fracture behavior was simulated by means of an embedded micromechanical

model. Within this approach, the actual microstructure of the composite with the

corresponding mechanisms was only included in the fracture process zone (` × h),

while the remaining model of size L×H was assumed to be homogeneous with linear

elastic behavior. The mechanical properties associated to each of the constituents

(fibers, matrix and interfaces) were reported in previous chapters. Displacement

fields associated with the KI linear elastic fracture mechanics stress intensity factor

were applied to the external boundaries of the model and allowed to determine the R-

curves under the small scale bridging hypothesis. This condition was a compromise

between the length of the fracture process zone and the model dimensions (lc � L).

For the baseline properties, the steady-state fracture energy was G2+ ≈ 50 J/m2,

associated with a fracture process length of lc ≈ 400 µm.

In addition, a homogeneous model using a cohesive zone model to track the

crack propagation was developed in order to establish an energy equivalence with

the micromechanical embedded cell approach. A bilinear homogenized cohesive

law corresponding to fiber/matrix debonding and matrix damage/tearing was least-
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square fitted to the R-curves resulting from the CMM model. It was found that the

steady-state fracture energy was mainly dependent on the interface toughness while

enhancing matrix toughness was less effective. These findings were corroborated

by the direct inspection of the damage patterns close to the crack tip. When the

fiber/matrix interface toughness is increased, more damage by fiber/matrix debond-

ing is observed close to the crack tip allowing the resin to sustain additional stresses

in this area, improving as a result the fracture energy of the composite. Fiber dis-

persion also plays a fundamental role as increasing the distance between adjacent

fibers, the remaining matrix ligaments are capable of sustaining higher load levels,

thus, enhancing the toughness of the composite.

The framework presented is embedded into the multiscale research line of the

Composite Materials Group (IMDEA Materials) and shows up as a potential means

to characterize the fracture response of an FRP taking into account the microme-

chanical features of the composite material. Two general possibilities are envisioned

from the methodology presented. Firstly, the potential to homogenize the material

behavior by means of a cohesive law representing the actual fracture mechanisms of

the material, transferring information between length scales (micro and meso), as

for instance, in a homogeneous constitutive model used in the analysis of angle ply

laminates (i.e. computational mesomechanics). Secondly, enabling a simple way to

optimize properties (strength and toughness) of heterogeneous materials by means

of virtual tests performed prior to material manufacturing.
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6Fiber Kinking: From Micro to
Mesomechanics

6.1 Introduction

The strong anisotropy and heterogeneity of unidirectional fiber-reinforced compos-

ites cause very different failure mechanisms depending on the load state. In this

chapter, the fiber kinking phenomenon, which is known as the failure mechanism

that takes place when the fibers are loaded under longitudinal compression, is ana-

lyzed (Schultheisz and Waas, 1996).

6.1.1 Objective and outline

The aim of this chapter is to compare and validate a mesoscale continuum dam-

age mechanics (CDM) model developed by A.C. Bergan (Structural Mechanics and

Concepts Branch at NASA Langley Research Center) to capture fiber kinking with

a high fidelity computational micromechanics (CMM) model based on Naya et al.

(2017b). The CMM model is used to assess the relative significance of various model

features and assumptions in order to improve the understanding of the mechanics

of the fiber kinking process. While the CMM model is a powerful tool for analyzing

the mechanics of the kinking process, its small scale precludes application to typical

structures. Therefore, the CMM model is exploited to interrogate the assumptions

of the mesoscale model for fiber kinking.

This chapter is organized as follows. An initial review of the state of the art

is done in Section 6.2. In Section 6.3, the main features of the CDM model are

presented: fiber kinking theory (FKT), element decomposition, and model verifica-

tion. The finite element (FE) micromechanical models are presented in Section 6.4:
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the single-fiber kinking model, multi-fiber kinking model, and the in-plane shear

model. Results from the CMM and CDM models are compared in Section 6.5. A

parametric study on the influence of the fiber/matrix interface taking advantage of

the micromechanical model developed is shown in Section 6.6. Finally, concluding

remarks are presented in Section 6.7, summarizing the ability to derive the mi-

cromechanical parameters from the CMM model to feed the mesoscale model, and

the representativity of fiber kinking phenomenon by the CDM model.

6.2 State of the art

Numerous evidences of the fiber kinking mechanism are found in the literature,

e.g. Piggott and Harris (1980); Kyriakides et al. (1995); Waas and Schultheisz

(1996); Pimenta et al. (2009a). Fiber kinking takes place in most high fiber volume

fraction composite materials: as compressive loading increases, fibers rotate and

matrix undergoes shear deformation, at some load level the matrix cannot support

the shear stress and the system becomes unstable (Budiansky and Fleck, 1993), see

Figure 6.1a. This shear instability is translated into a localized shear band (i.e.

kink band) with fibers misaligned by an angle ϕ = ϕ0 + γ where ϕ0 represents

initial imperfections and γ is the shear strain. The kink band has a width wkb

and propagates along the specimen at an angle β, as shown in Figure 6.1a. After

the sudden drop of load, there is a stress plateau during which the kink band first

propagates normal to the fiber direction and then under certain conditions grows

wider in the fiber direction, as shown in Figure 6.1b. The widening of the kink band

along the fibers is referred to as band broadening (Budiansky et al., 1998; Vogler

and Kyriakides, 1999).

Several reviews of analytical, numerical, and experimental investigations into

fiber kinking are available in the literature (Camponeschi, 1987; Schultheisz and

Waas, 1996; Waas and Schultheisz, 1996; Naik and Kumar, 1999). As such, only a

few of the most relevant works on modeling fiber kinking are reviewed here. Brief re-

views of analytical models, finite element based mesoscale models, and finite element

based micromechanical models are given in the following three sections.
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Figure 6.1: Illustration of the fiber kinking phenomenon in a unidirectional fiber-
reinforced composite: a) geometry idealization and b) typical stress-strain curve
under pure longitudinal compression.

6.2.1 Analytical models for fiber kinking

One of the first analytical expressions found for longitudinal compressive strength

Xc of fiber-reinforced composites is given by Rosen (1965)

Xc =
Gm

1− Vf
≈ G (6.1)

where Gm is the shear modulus of the matrix, Vf is the fiber volume fraction, and G

is the shear modulus of the composite lamina. This expression was derived assuming

fiber kinking is an elastic buckling phenomenon, the fibers are inextensible, β = 0,

and ϕ0 = 0. According to Budiansky (1983), relaxing Rosen’s analysis to account for

β 6= 0 and ϕ0 6= 0 still overpredicts experimentally measured compressive strength.

Initial fibers misalignment ϕ0 of an infinitely long band of fibers (b → ∞) was

included by Argon (1972) assuming rigid perfectly-plastic shear behavior

Xc =
τY
ϕ0

(6.2)

where τY is the yield shear stress of the composite.

The influence of defects on the compressive failure of a fiber reinforced composite

was experimentally observed by Chaplin (1977) who noted that in case of elastic
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microbuckling, failure should occur along the full width of the lamina simultaneously,

while that was not the case in his experiments.

In these first analytical expressions found in the literature, eqs. 6.1 and 6.2,

compressive failure was assumed to be triggered by fiber microbuckling. For typical

high-fiber-volume-fraction composites, strength was overestimated by 1.5 to 5 times

the experimental values (Schultheisz and Waas, 1996). Budiansky (1983) proposed

combining the nonlinear shear response of the matrix and the fibers misalignment

in an analytical model. In his initial work, he considered an elastic perfectly-plastic

composite with yield strain γY = τY /G under longitudinal shear and inextensible

fibers. For β = 0, equilibrium considerations are used to derive

Xc =
τY

γY + ϕ0

=
G

1 + ϕ0/γY
(6.3)

Wisnom (1990) derived a similar expression using a micromechanical approach.

Later, Budiansky extended eq. 6.3 to consider strain hardening in the nonlinear

shear response of the ply (Budiansky and Fleck, 1993) using a Ramberg-Osgood law

(Ramberg and Osgood, 1943)

γ =
1

G
· (τ + sign(τ) · α · |τ |η) (6.4)

where G is the elastic shear modulus of the composite, and η and α are material

parameters of the Ramberg-Osgood model. For eq. 6.4, the closed-form solution for

the longitudinal compressive strength based on Budiansky and Fleck (1993) is

Xc =
G

1 + η · α1/η ·
(
G·ϕ0

η−1

) η−1
η

(6.5)

The expressions proposed by Budiansky (1983) and Budiansky and Fleck (1993) are

referred to as fiber kinking theory (FKT). Pinho et al. (2005) generalized FKT to

any nonlinear shear response and 3-D stress states within the LaRC04 criterion.

A simple approximation was proposed by Hsu et al. (1998) for calculating the

complete stress-strain curve using FKT where axial stress is defined by

σc(γ) =
τ(γ)

γ + ϕ0

(6.6)

and the corresponding axial strain is
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εc(γ) = ϕ0γ +
γ2

2
+
σc(γ)

E1

(6.7)

given any ϕ0 and τ(γ), with the longitudinal elastic modulus of the ply, E1. The

stress-strain curve calculated using eqs. 6.6 and 6.7 includes the unstable post-peak

response that can be represented by the dotted line in Figure 6.1b.

Barbero (1998) derived an expression for strength using the principal of total

potential energy, finally arriving at

Xc = G
( χ

0.21
+ 1
)−0.69

(6.8)

after introducing a numerical approximation. In eq. 6.8, χ = Gϕ̃0/τu is a dimen-

sionless constant that characterizes the compressive strength, with ϕ̃0 being the

standard deviation of ϕ0. The nonlinear shear behavior of the ply is assumed to be

described by

τ(γ) = τu tanh

(
Gγ

τu

)
(6.9)

where the shear modulus, G, and the parameter τu define the response. It is empha-

sized that eq. 6.8 is not empirical. Rather, the numerical values are nondimensional

and arise from the approximation used as a simplification for the exact solution.

Experimental investigations have reported variation in strength with specimen

length (Kyriakides et al., 1995; Smoot, 1982), which is a trend that is not accounted

for in eqs. 6.1-6.3 and 6.5. Lagoudas et al. (1991) introduced an energy based

formulation considering both macroscale and microscale factors that accounts for

the role of specimen length L on strength

Xc = wkb

√
2VfEx
πdL

τYmϕc (6.10)

where Vf is the fiber volume fraction, Ex is the longitudinal modulus of the laminate,

d is the fiber diameter, τYm is the shear yield stress for the matrix only, and ϕc is

the misalignment of the fibers at maximum compressive load. Wisnom and Atkin-

son (1997) suggested that strain gradient effects may also explain the variations in

experimental measurements.

Fleck et al. (1995) proposed the bending theory of fiber kinking, which uses

couple stress theory to account for fiber bending and the wavelength of initial fiber
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misalignments while maintaining a ply-level homogenization. The analysis shows

that fiber bending and imperfection wavelength have a negligible effect on strength

prediction. However, consideration of fiber bending is required to predict the kink

band width. The authors found that the kink band width is relatively insensitive to

material properties, and falls in the range 10 < wkb/d < 15 for typical carbon/epoxy

composites. The couple stress approach includes a bending moment per unit area,

and this results in a stress tensor that is not symmetric.

Budiansky et al. (1998) extended his previous work and used couple stress theory

to derive expressions for the behavior of kink bands after their formation. The

rotation angle of fibers at fracture ϕff is found to be

ϕff =

(
2τY
E1

)1/3

(6.11)

where it is noted that ϕff > ϕc. An expression for the band broadening stress, which

is referred to as the residual stress herein, is also given in Budiansky et al. (1998)

σr =
2τL

sin(2β)
(6.12)

where τL is the shear stress associated with large rotations (the approximation τL =

2τY is suggested). The parameter β was left unspecified since no simple explanation

for the range of experimentally reported values of 10◦ < β < 30◦ was available (Jelf

and Fleck, 1992).

Moran et al. (1995) proposed an expression for the residual stress based on an

energy balance and preservation of volume under the assumption of ϕ = 2β

σr =
1

2sin2β

∫ 2tanβ

0

τ(γ) dx (6.13)

where τ(γ) is the nonlinear stress-strain law in shear. Moran suggested a trilinear

curve for τ(γ). The resulting expression for σr is minimized with respect to β.

Moran demonstrated that this approach yields reasonable values for both β and σr

for ductile matrix composites. However, other authors have questioned the validity

of the ϕ = 2β assumption, e.g. Vogler and Kyriakides (1999). It is noted that

Moran’s approach can be extended to strain hardening shear nonlinearity curves

such as eq. 6.4 using numeric integration.
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Moran’s model is one of the very few analytical models that determine β; most

models require β to be specified as an input parameter. Schapery (1995) proposed

that β is set by a balance between satisfying a matrix tensile failure criterion and

shear instability. Despite these efforts, no consensus has been reached for predicting

analytically σr or β.

In contrast to the aforementioned homogenized models, a micromechanical ap-

proach has been taken by others. Hahn and Williams (1984) derived a model based

on equilibrium of an initially misaligned fiber in a matrix with shear nonlinearity.

Effendi et al. (1995) added considerations for fiber failure and showed that low-

strength fibers with small imperfections fail by fiber compression, while composites

with larger imperfections failed by fiber kinking.

Pimenta et al. (2009b) built on the approach used by Hahn and Williams (1984)

to derive a closed-form expression for the longitudinal compression strength and

predict the post-failure response of a unidirectional lamina. The model developed

is based on the equilibrium of an imperfectly-aligned fiber loaded in compression

and bending, and supported in shear by an elastic perfectly-plastic matrix. An

initial fiber misalignment given by y0(x) = ȳ0 · (1 − cos(πx/L)) is assumed where

the fiber axis is along the x-direction and the parameters ȳ0 and L define the initial

imperfection. The expression derived for the compressive strength is

Xc = τY
G2D
m d+ π2

L2 EfIf

τY + π ȳ0
L
G2D
m

(
V 2D
f

Af

)
(6.14)

where subscript f indicates quantities associated with the fibers and m refers to ma-

trix quantities. In eq. 6.14, G2D
m = Gm/(1 − V 2D

f ) with V 2D
f = d/(d + tm), wherein

tm is the thickness of the matrix layers in the 2-D approximation. Assuming that

fiber failure is governed by maximum compressive stress, wkb is obtained from the

analysis by identifying the location along the fiber where the maximum stress crite-

rion is satisfied. The trends predicted from this model were found to be consistent

with the bending theory for fiber kinking (Fleck and Jelf, 1995).

While these analytical models provide great insight and utility, they lack the

ability to analyze particular structural configurations and ignore many details of

the kinking process. For these reasons, several numerical approaches have been

proposed using finite elements (FE) methods. The FE modeling approaches that

are relevant to the present work are reviewed in the following two sections.
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6.2.2 Modeling fiber kinking at the mesoscale using FE

A variety of FE modeling approaches for fiber kinking in a homogenized lamina

(i.e. mesoscale) have been proposed. Wisnom (1993) introduced superposing beam

elements on a continuum mesh where the beam elements represent the fibers and

the continuum mesh represents the matrix. The study showed the importance of

considering fiber rotation, shear nonlinearity in the matrix, and bending of the fibers

in order to make accurate predictions of fiber kinking. Wisnom pointed out that

most commercial FE codes lack the ability to represent fiber rotation and fiber

bending in a homogenized mesoscale model, and thus require techniques such as

the beam superposition approach to predict fiber kinking. Other authors have used

Wisnom’s approach to study the effects of the distribution of fiber misalignment

(Lemanski and Sutcliffe, 2012; Sutcliffe, 2013) and fiber packing (Zhang et al., 2016).

In order to account for fiber bending in homogenized mesoscale models, Fleck

and Shu (1995) used Cosserat theory (also termed micropolar theory), which is a

higher order continuum theory that introduces stress couples into the constitutive

law. The model was used to explore the FKT assumption of an infinitely long band

(b→∞ in Figure 6.1a) of misaligned fibers. Finite element simulations using the 2-

D couple stress based model showed the effect of the size of the initial imperfection

where, as b increases from zero to infinity, the strength decreases from the value

predicted by eq. 6.1 to the asymptote predicted by the 1-D couple stress model

in Fleck and Jelf (1995). This model has been extended to study the effect of

multiaxial loading (Shu and Fleck, 1997), strain gradient effects (Fleck and Liu,

2001), and random fiber waviness (Liu, 2004). Hasanyan and Waas (2018) proposed

calibration procedures to define the unconventional material property inputs for their

model based on couple stress theory using micromechanical models. These higher

order continuum approaches show tremendous promise, but their usage remains

limited since they depart from standard conventions in structural analyses (e.g.,

using an unsymmetrical stress tensor).

In contrast to the efforts to model fiber kinking directly, some authors have used

phenomenological constitutive laws that resemble the characteristic fiber kinking

response shown in Figure 6.1b. In these approaches, the constitutive laws are de-

scribed by model input parameters that define the residual stress σr and fracture

toughness. Careful selection of model parameters enables spectacular simulations of

damage for complex structures (McGregor et al., 2008; Pinho et al., 2012; Joseph

et al., 2017, 2018; Davidson et al., 2018). However, the predictive capability of these
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approaches is limited due to the requirement for calibration at the structural scale.

Approaches based on FKT where the fiber rotation and shear nonlinearity are

carefully modeled provide an appealing alternative. Basu et al. (2006) formulated

one such model using Schapery theory (Schapery, 1990) and tracking the misaligned

fiber direction by integrating the increment in shear strain. Good agreement for

strength as predicted by a 2-D model similar to that of Kyriakides et al. (1995) was

achieved. Feld et al. (2012) proposed augmenting an existing CDM model with an

additional term based on a rheological model to account for fiber kinking. Davidson

and Waas (2017) used Hill’s anisotropic plasticity to model out-of-plane kinking. By

introducing thin regions representing resin-rich layers between the plies, predictions

with β > 0 were obtained. Bergan and Leone (2016) proposed a model based

on fiber kinking theory that uses the deformation gradient decomposition (DGD)

method to account for the coupling between longitudinal splitting and fiber kinking.

The model predictions show that large rotations and shear nonlinearity dominate

the response. Likewise, Gutkin and Pinho (2015), Gutkin et al. (2016) and Costa

et al. (2017) introduced a model based on fiber kinking theory and a physically-

based constitutive law for shear nonlinearity. The authors demonstrated that the

model is capable of predicting the compression strength and residual stress. These

methods are attractive since they are physically based on the mechanics of fiber

kinking, while avoiding the complications of high order theories. The mesoscale

model presented herein adopts this approach.

6.2.3 Microscale FE modeling of fiber kinking

Numerical micromechanical models of fiber kinking have offered important insights

on the topic. By explicitly modeling the fiber and matrix individually in a repre-

sentative volume element (RVE) and accounting for material and geometric nonlin-

earity, the fiber kinking process can be simulated numerically. Some of the first of

such models were developed by Kyriakides et al. (1995) consisting of a 2-D repre-

sentation with a layered composite of alternating elastic fibers and, J2 flow theory

elasto-plastic matrix. The layers followed a sinusoidal curve representing the ply

imperfections (ϕ0). These models were among the first to predict the sequence of

events leading to the formation of kink bands and realistic values for the kink band

angle, β, determined by fiber failure.

One of the first 3-D micromechanical FE models for fiber kinking was developed

by Hsu et al. (1998) in order to assess the limitations of 2-D models. The model
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used a hexagonal fiber pattern with 60 elastic, isotropic fibers and J2 flow theory

elasto-plastic behavior for the matrix. The authors demonstrated that 2-D and 3-D

models were in good agreement for predictions of Xc when separate 2-D and 3-D

RVEs were used to the calibrate the plasticity parameters to the same test data for

the shear stress-strain response. The authors noted that the matrix shear response

resulting from the calibration differs for the 2-D and 3-D models. Furthermore, the

matrix shear response is not equivalent to measurements for neat resin. In contrast

to the good agreement for strength, the post-peak predictions for the two models

differ: the 3-D model predicts larger values for wkb and β. In the same study,

the FE models were compared with analytical FKT predictions. While the strength

predictions were in good agreement, the FKT predicted larger values for the residual

stress, σr. Thus the authors highlighted the complications of accurate prediction of

the post-peak regime. As such, the authors modified the 3-D model in a follow

up study on the propagation behavior of already-formed kink bands, where β was

explicitly modeled (Hsu et al., 1999). Reasonable agreement was demonstrated with

Budiansky’s band broadening stress (eq. 6.12).

Fiber kinking initiation and kink band propagation transverse to the fibers was

systematically tested and simulated by Vogler et al. (2001) and Vogler and Kyri-

akides (2001). Experimental tests were carried out holding a constant longitudinal

compressive load while applying a progressive shear load under displacement control.

In this manner, kink band propagation along the width of the specimen was notice-

ably more stable. It was observed that kink band rotation, β, was insensitive to

the initial imperfection features. The numerical model considered a Drucker-Prager

model for the matrix to account for inelastic dilation and sensitivity to hydrostatic

pressure which were found to affect the post-peak regime of the composite, especially

the β angle.

Yerramalli and Waas (2004) developed a 3-D model with 37 fibers that accounted

for fiber orthotropy and J2 incremental theory of plasticity for the matrix. As before,

an RVE with shear loads was used to calibrate the nonlinear shear curve. By com-

paring the results obtained using isotropic fibers, consideration of fiber orthotropy

was shown to reduce the post-peak residual stress σr. Examination of the stresses

in the fibers showed that high shear strains in the fibers would likely lead to failure

and that smaller diameter fibers may break before fiber kinking occurs.

A number of 2-D micromechanical models have been developed building on the

foundational efforts described above to study different features and parameters af-

128



6. Fiber Kinking: From Micro to Mesomechanics

fecting the fiber kinking phenomenon. Gutkin et al. (2010a) analyzed the failure

envelopes for fiber reinforced composites under combined longitudinal compression

and in-plane shear (σ11 − τ12) through a single-fiber 2-D model employing periodic

boundary conditions (PBC). This study showed two types of failure mechanisms:

shear-driven fiber failure and kink-band formation, which were confirmed in the

complementary experimental work (Gutkin et al., 2010b). Interaction between fiber

kinking and fiber/matrix debonding (splitting) was investigated by Prabhakar and

Waas (2013) using a multiple-fiber 2-D model which incorporated a cohesive zone

model between the fibers and the matrix. The results suggested that it may be im-

portant to consider both fiber kinking and matrix splitting for accurate prediction

of compressive strength.

Modern computational resources have enabled massive multi-fiber 3-D microme-

chanical models. Bai et al. (2015) developed one such model and subjected it to

a triaxial stress state including longitudinal compression. The model results show

the same sequence of events as other authors, with plasticity in the matrix being

the most dominant factor leading to kinking. A hybrid FE model of a 3-D cross-ply

laminate section was developed by Bishara et al. (2017b) with the longitudinal plies

represented through a single row of fibers as in Bishara et al. (2017a), while the 90◦

plies are modeled by means of a homogeneous CDM model. This multiscale model

was able to capture several failure mechanisms including fiber kinking formation in

the 0◦ plies, subsequent delamination between adjacent plies, and matrix cracking

in the 90◦ plies.

Recently, Naya et al. (2017b) developed a 3-D micromechanical model generated

by extruding a fiber distribution along a sinusoidal curve representing the initial fiber

misalignment, ϕ0. The model consists of fibers oriented in the extrusion direction,

a pressure-dependent polymer matrix and a cohesive interaction in the fiber/matrix

interface accounting for friction. The application of periodic boundary conditions,

as in Gutkin et al. (2010a), permits the model to be simplified to a single-fiber sys-

tem. The model predictions were found to be in good agreement with experimental

measurements.

6.3 Continuum Damage Mechanics Model (CDM)

The main features of the mesoscale constitutive model developed by Bergan and

Leone (2016) to capture the fiber kinking failure mechanism are presented in this
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section.

The CDM model employs geometric nonlinearity and shear nonlinearity based

on Budiansky’s fiber kinking theory (Budiansky, 1983; Budiansky and Fleck, 1993;

Budiansky et al., 1998) with β = 0. The model includes the kinematics of the fiber

kinking process by tracking fiber misalignment throughout loading. The charac-

teristic constitutive response shown in Figure 6.3b is not directly prescribed in the

model. Instead, the response is a result of the shear nonlinearity and large rotation

of the fiber direction. The model is formulated in the context of continuum dam-

age mechanics (CDM) and integrated into the existing code CompDam (Leone et al.,

2018), which is a CDM code for predicting damage in carbon fiber reinforced poly-

mer laminates. The deformation gradient decomposition (DGD) method is used for

accurate representation of the kinematics of the kink band and fiber misalignments

(Leone, 2015).

This model was implemented in Abaqus/Explicit as a VUMAT (Simulia, 2013).

The main input parameters of the model, apart from the elastic properties (E1, E2,

G12, ν12, ν23 and cl), are the nonlinear shear curve through the Ramberg-Osgood

parameters (G, η and α), the initial fiber misalignment (ϕ0) and the kink band

width (wkb).

In the following sections, the main features of the CDM model are briefly de-

scribed.

6.3.1 Compressive strength: Fiber kinking theory (FKT)

As previously described in Section 6.2.1, the fiber kinking theory (FKT) was initially

proposed by Budiansky (1983) for an elastic-perfectly plastic composite material

under shear. Later, it was generalized for a nonlinear shear response (Budiansky and

Fleck, 1993), in particular, deriving the closed-form solution for a Ramberg-Osgood

type shear curve (see eq. 6.5) and incorporated the effect of additional shear loading

(τ12). Pinho et al. (2005) extended this approach to any nonlinear shear response

and introduced the effect of transverse loading (σ22) and 3-D stress states.

FKT is based on the inability of the material to sustain the shear stress induced

by the compressive load due to the initial misalignment of the fibers, ϕ0, leading to

an unstable state. The shear stress in the rotated fiber frame is

τ ′12 =
σc
2

sin(2ϕ) (6.15)
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LHS

a) b)

Load (eq. 6.15)

Material (eq. 6.17)

Figure 6.2: a) Shear stress-strain curves representing the nonlinear material response
(eq. 6.17) and the induced shear stress due to compressive loading (eq. 6.15), b)
Instability point representation, σc = Xc. Adapted from Pinho et al. (2005).

where σc is the longitudinal compressive stress and ϕ the sum of an initial misalign-

ment, ϕ0, with the fiber rotation due to loading, γ′12

ϕ = ϕ0 + γ′12 (6.16)

From the constitutive law, the shear stress-strain relationship is represented as

τ ′12 = fCL(γ′12) (6.17)

where fCL, in the case of a Ramberg-Osgood expression is the inverse function of

eq. 6.4 (Ramberg and Osgood, 1943).

In summary, eq. 6.17 represents the material response, while eq. 6.15 embodies

the load applied. The graphical representation of each term is shown in Figure 6.2a,

where the black line stands for the constitutive law of the material in shear and

the blue line depicts the loading term. For the loading case shown in Figure 6.2a,

the loading curve intersects the material curve revealing the shear strain in the

rotated fiber frame, γm. However, as σc increases, the slope of the blue curve grows

proportionally and eventually it becomes tangent to the black curve at γ = γc, as

illustrated in Figure 6.2b. At this point, instability is reached and the the material

is unable to sustain higher compressive load, σc = Xc. The analytical solution can

be analytically expressed as
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fCL(γc) =
1

2
Xc sin[2(ϕ0 + γc)] (6.18)

∂fCL
∂γ

∣∣∣
γc

= Xc cos[2(ϕ0 + γc)] (6.19)

where the unknowns are either the compressive strength, Xc, or the initial fiber

misalignment, ϕ0, and the shear strain to failure, γc. Therefore, for a given shear

curve, fCL, there is a biyective relation between the compressive strength and the

initial fiber misalignment: Xc(ϕ0) and ϕ0(Xc).

6.3.2 Initial misalignment angle

The compressive strength of the ply was introduced within the CDM model by

means of the initial misalignment angle, ϕ0, which accounts for fiber misalignments

and other manufacturing anomalies that may contribute to fiber kinking initiation.

The initial fiber misalignment is calculated by rearranging eq. 6.5 as

ϕ0 =
η − 1

G12

·
(
G12 −Xc

Xc η α
1
η

) η
η−1

(6.20)

such that ϕ0 is fully defined in terms of material property inputs. The dependence

of the present model on Xc as a material property input could be eliminated by

considering experimentally measured fiber misalignments.

6.3.3 Mesh objectivity and decomposition

Material models that exhibit strain-softening behavior are susceptible to mesh sen-

sitivity when strain localizes. In conventional CDM models, this deficiency is often

addressed with Baz̆ant’s crack band theory in which the energy dissipated is scaled

by the element size (Bazant and Oh, 1983). In the present model, there is no crack

surface on which traction goes to zero and therefore the crack band theory is not ap-

plicable. Nonetheless, there is an inherent mesh sensitivity since the model includes

a strain-softening response leading to strain localization in a band of elements after

the strength is reached. Recently, Costa et al. (2017) identified this mesh sensitivity

as it relates to modeling fiber kinking and recommended two options for ensuring

mesh objectivity. The method used herein is analogous to the strain decomposition

method proposed by Costa et al. (2017) and is an adaption following previous work

by Bergan and Leone (2016).
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Undamaged material 
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Elastic 
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Kink band
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Figure 6.3: Schematic representation of the CDM model: a) decomposition into
the kink band and the undamaged region, and b) representation of the stress-strain
curve under longitudinal compression.

When the plastic strain becomes non-negligible, the decomposition is performed.

In the decomposed element, shear nonlinearity is enabled in the kink band region,

whereas in the undamaged material region the shear response is linear. The kink

band width, wkb, is assumed to be smaller than the element size in the x1-direction,

l1. The relative kink band size is defined as ωkb = wkb/l1. When ωkb ≤ 0.95,

the element is decomposed into an undamaged region and a kink band region, as

shown in Figure 6.3a, in order to preserve mesh objectivity. When ωkb > 0.95,

the kink band width is close to the element size, so the material model described

above is applied directly without decomposition of the element. When the element

is decomposed, the deformation gradient decomposition (DGD) approach is used to

enforce continuity and equilibrium between the undamaged and kink band regions

(Leone, 2015; Bergan and Leone, 2016).

6.3.4 Determination of the kink band width

While the model includes fiber rotation, bending of the fibers is ignored. As a result

of this assumption, wkb cannot be predicted by the model since wkb is set when

the fibers break under high local bending stresses (Budiansky, 1983; Steif, 1990;

Gutkin et al., 2010b). As such, wkb is an input parameter for the model and must

be obtained from micromechanical analysis or experimental measurements.

Values reported in the literature for different carbon/epoxy composites are sum-
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marized in Table 6.1. Some of the results correspond to experimental observations

through microscopy and other methods like high resolution X-Ray Computed To-

mography (XCT) (Bergan and Garcea, 2017).

Budiansky (1983) derived an expression for wkb by accounting for rigid-perfectly

plastic shear nonlinearity and inextensional bending of perfectly aligned fibers using

a couple-stress formulation. Assuming β = 0, wkb is

wkb

d
=
π

4

(
E1

2τY

)1/3

(6.21)

where d is the fiber diameter and τY is the shear yield stress. Budiansky suggested

a kink band width of about 12 fiber diameters for typical carbon/epoxy materials.

The kink band width predicted through eq. 6.21 for the materials analyzed in this

chapter, AS4/8552 and IM7/8552, is shown in Table 6.1, where τY = 95 MPa is

determined from the Ramberg-Osgood shear curve using a 5% offset, the diameter

of AS4 carbon fiber is reported in Table 2.4 and the diameter of IM7 is 5.2µm

(Hexcel, 2018b). Herein, the kink band width of the CDM model was set to 100

and 50 µm for AS4/8552 and IM7/8552 respectively, which is on the order of values

reported in the literature, see Table 6.1.

6.3.5 Material properties

Two material systems, AS4/8552 and IM7/8552, are considered in the demonstration

of the CDM and CMM models. The material properties for the CDM model are

listed in Table 6.2.

The fiber-direction moduli, E1, reported in Table 6.2 are the tensile values mea-

sured on the interval 0.1% and 0.3% strain. Often, separate values for E1 are

reported for tension and compression for a piecewise linear representation. Never-

theless, a continuous function with a single parameter, cl, is used herein to consider

the nonlinear elastic response of carbon fibers as described previously in Chapter 2.

The analogous expression to eq. 2.3 at the ply scale is

E∗1 = E1(1 + cl ε11) (6.22)

where cl is the nonlinearity coefficient for the ply and is an additional material

property to be obtained from test data. A least squares fit of experimental data

reported by Peterson and Murphey (2016) was used to obtain cl = 11 from IM7/8552
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Table 6.1: Values of wkb reported in the literature.

Reference Method Material system wkb

(µm)

Budiansky (1983) Analytical 2-D, eq. 6.21 AS4/8552 59

IM7/8552 45

Jelf and Fleck (1992) Exp. data fitting AS4/8552 67

IM7/8552 51

Svensson et al. (2016) Microscopy HTS/RTM6 200

Hapke et al. (2011) Microscopy T700/977-2 55

Jumahat et al. (2010) Microscopy HTS40/977-2 80

Gutkin et al. (2010b) Microscopy T800/924 50

Pinho et al. (2006) Microscopy (CCT) T300/913 70

Soutis (1996) Microscopy T800/924C 55

Bergan and Garcea (2017) In situ X-Ray CT IM7/8552 25

Pimenta et al. (2009b) Analytical 2-D T800/924 250

Zobeiry et al. (2015) Microscopy (CCT) IM7/8552 50

Laffan et al. (2012) Microscopy (4PBT) IM7/8552 25

Bai et al. (2015) 3-D micromechanical FE AS4/3501 49

Naya et al. (2017b) 3-D micromechanical FE AS4/8552 120

Table 6.2: Material properties for the CDM model: AS4/8552 (Marlett et al., 2011)
and IM7/8552 (Wanthal et al., 2017).

Material E1 E2 G12 ν12 ν23 α η Xc cl wkb

[GPa] [GPa] [GPa] [MPa1−η] [MPa] [µm]

AS4/8552 131.6 9.24 4.83 0.30 0.45 2.86 10−11 6.49 1480 12.2 100

IM7/8552 152.7 8.7 5.16 0.32 0.45 4.06 10−9 5.4 1731 11.0 50

unidirectional specimens. Whereas for the case of AS4/8552, experimental single-

fiber tests were conducted to obtain the nonlinearity parameter at the fiber-scale,

cf , as shown in Section 2.1.3. This value was related to the lamina through the rule

of mixtures, cl = Vf · cf , where Vf = 60% is the fiber volume fraction (Peterson and

Murphey, 2016). Following this procedure, the value obtained for AS4/8552 was

cl = 12.2.
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6.3.6 Model verification

Analyses were conducted using a model with a single isoparametric hexahedral ele-

ment with reduced integration (C3D8R, Simulia (2013)) subjected to uniform end

shortening in the longitudinal direction in order to verify the constitutive behavior

of the model. Boundary conditions were imposed to prevent hourglassing modes of

deformation. The element had a uniform edge length of 0.15 mm. A smooth-step

was applied with a duration of 0.1 and uniform mass scaling with a factor of 105.

Rayleigh damping was used to limit vibrations which occur as a result of the large

load drop when the strength is reached. The value of the Rayleigh damping coeffi-

cient, αR, was chosen so as to minimize the vibration without changing the global

response.

The stress vs. strain results predicted by the CDM model are shown in Fig-

ure 6.4a for the IM7/8552 material system. The compressive stress, σc, is calculated

from the reaction force divided by the element cross-sectional area, σc = F1/(l2 l3).

Likewise, the compressive strain is obtained from the end shortening displacement

εc = u1/l1. The stress vs. strain results with the CDM model are shown as the solid

black line. The linear stiffness calculated using E1 is denoted by the dotted line.

The strength is shown on the plot as the horizontal blue line labeled Xc. The results

from FKT, eqs. 6.6 and 6.7, are shown as the dashed line. The results show that

the model reproduces the initial stiffness in good agreement with the linear stiffness

at small strains. At larger strains, the model predicts that the stiffness degrades as

the peak strength is approached. The stiffness reduction is primarily a result of the

fiber nonlinearity, described by eq. 6.22. Nevertheless, geometric nonlinearity also

contributes to the stiffness reduction. The strength from the model is in very good

agreement with the input property, where it can be observed that the model just

slightly over predicts the input value of Xc by 1.5%. Once the strength is reached,

a snap-back phenomenon occurs as shown for the FKT results. Since the present

model is not capable of predicting the snap-back behavior, the model response has

an abrupt drop followed by some vibration. The vibrations are mostly suppressed

by the Rayleigh damping. Afterwards, the dynamic effects from the abrupt load

drop dissipate at around 1.8% strain, towards an asymptotic residual stress level,

σr. A range of σr is calculated using eq. 6.12 with shear stress τL = 95 MPa (at

5% strain) and β = 12◦ to 16◦ based on experimental measurements (Bergan and

Garcea, 2017). While the present model predicts slightly lower residual stress than

FKT, the range for σr from eq. 6.12 superimposed on Figure 6.4 shows very good
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Figure 6.4: Constitutive response of the mesoscale model obtained from a single
element analysis for IM7/8552.

agreement with the results from the CDM model. The fiber rotation vs. strain

curves are read in Figure 6.4b. The fiber rotation in the current CDM model, ϕ,

shows that the initial misalignment at no load leads to slight rotation up to the point

where the strength is reached. At that point large fiber rotation suddenly occurs,

and it continues to grow as the model approaches the residual stress in the post-

peak regime. This behavior is also captured by the FKT model (Hsu et al., 1998).

It should be emphasized that the constitutive response described in this paragraph

and the accompanying figure are outcome of the model, not prescribed directly. As

a result, the model has the ability to account for several aspects of FKT, such as

the relationship between the initial misalignment angle (ϕ0), compressive strength

(Xc), and residual stress (σr).

Other verification models, assessing the effect of the kink band width and the

element decomposition are not shown in this thesis, but are described in detail in

Herráez et al. (2018a).

6.4 Computational Micromechanics Model (CMM)

A 3-D single-fiber computational micromechanics (CMM) model is used to assess

the relative significance of various features and assumptions of the relatively coarse

mesoscale model in order to improve the understanding of the mechanics of the
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fiber kinking process. In this section, the micromechanical finite element model is

described including the geometry, discretization, and material properties. Experi-

mental measurement and calibration undertaken to define some of the most critical

material properties are described. This section concludes with verification examples

that demonstrate the behavior of the CMM.

6.4.1 3-D RVE for fiber kinking

During the last three decades, a variety of micromechanical models have been de-

veloped to represent the fiber kinking process. The aim of this work is to study

the initiation and evolution of the fiber kinking process, including kink band broad-

ening (Moran et al., 1995; Budiansky et al., 1998) in the post-failure regime. As

such, there is no need to use a multiple-fiber model that could capture kink band

propagation. Instead, a single-fiber 3-D model with periodic boundary conditions is

employed based on Naya et al. (2017b).

a) b)

c)

d)

Polymer matrix

Carbon fiber

Fiber-matrix interface

(cohesive surface)

(initial misalignment)

Fiber sections/orientations

Partitions normal to the fiber axis

Figure 6.5: Illustration of a) the single-fiber 3-D model, b) detail of the mesh, c)
exploded cut view of the model, and d) side view with detail of the longitudinal
mesh and material orientation. Adapted from Naya et al. (2017b).

The model represents a 3-D single carbon fiber extruded in the longitudinal
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direction (z) along the half wavelength of a sine curve of length L, with an initial

misalignment, ϕ0, following eq. 6.23, as shown in Figure 6.5. Due to the anisotropic

behavior of the carbon fiber, reinforcement sections were oriented according to its

local misalignment along the fiber axis according to eq. 6.24 as shown in Figure 6.5d.

y(z) = L
ϕ0

π
·
(

1− cos
(
π
z

L

))
(6.23)

y′(z) = ϕ0 · sin
(
π
z

L

)
(6.24)

The fiber diameter is d and a fiber volume fraction Vf = 60% is assumed, leading

to a square RVE of side w = d/2 ·
√
π/Vf . The model is discretized using finite

elements in Abaqus/Standard (Simulia, 2013). Both, matrix and fiber, are modeled

with 8-node fully integrated isoparametric elements (C3D8). The in-plane mesh

size is set such that there are six elements along the fiber diameter, while in the

longitudinal direction it is 10 µm, as shown in Figure 6.5b. The model length is

L = 500 µm with partitions in the longitudinal direction normal to the fiber axis, as

shown in Figure 6.5d. The model length was selected based on a preliminary study,

as described in Section 6.4.4.

A single-fiber model requires a special definition of the boundary conditions, as

free boundaries would promote Euler buckling of the fiber, largely underestimating

the strength of the composite. Periodic boundary conditions (PBC) appear as the

most adequate solution. Gutkin et al. (2010a) showed that PBC can be applied

on single-fiber models for longitudinal compressive strength prediction (Xc) at the

expense of inducing β = 0◦. PBC are applied on the lateral faces of the model, while

the model ends are subjected to isostrain conditions to introduce the longitudinal

compressive load. For details on the description of the PBC, the reader is referred

to Section 4.2.1.

A homogeneous thermal step with a temperature drop, ∆T , was applied without

external loading prior to the loading step to consider the residual thermal stresses

induced by the cool-down from the curing temperature. This thermal step induces

a residual thermal stress field as a result of the mismatch between the thermoelastic

constants of fibers and matrix. The accurate simulation of the cool-down process

is hardly predictable due to the dependency of the thermoelastic properties of the

constituents on the temperature, specially in the case of the matrix. For the sake of

simplicity, constituents properties are assumed to be constant with the temperature,

139



6.4. Computational Micromechanics Model (CMM)

and it is the magnitude ∆T what is tuned to provide a reasonable estimation of the

residual stress level as described in Section 6.4.3.

6.4.2 Material models for the fiber, matrix, and interface

The model consists of two phases, fiber and matrix, and a cohesive interaction which

represents the fiber/matrix interface. Although, the constitutive material models are

similar to those described in Chapters 4 and 5, there exist some differences which

are pointed out in this section.

Carbon fiber

The carbon fiber was modeled as a transversely isotropic solid considering elastic

nonlinearity and inelastic damage. Elastic nonlinearity of carbon fibers in the longi-

tudinal direction is reported in the literature (Montagnier and Hochard, 2005) and

typically the longitudinal elastic modulus is modeled as a linear function of the lon-

gitudinal strain (Kowalski, 1988; Peterson and Murphey, 2016; Le Goff et al., 2017)

as considered herein by means of eq. 2.3

Fiber failure is given by a maximum stress criterion either in longitudinal tension,

σf11 ≤ Xf
t , or compression, σf11 ≥ −Xf

c and subsequent damage based on a CDM

scheme (Maimi et al., 2008). The details of the numerical implementation of the user

subroutine for the carbon fiber constitutive behavior can be found in Appendix C.

AS4 fiber tensile and compressive strengths, Xf
t and Xf

c , were characterized in Sec-

tions 2.1.3 and 2.2.2 respectively. Longitudinal properties of the AS4 carbon fibers

were experimentally obtained as described in Section 2.2. The IM7 carbon fibers

were not characterized for availability reasons. Instead, the compressive strength

of IM7 fiber was obtained from the literature (Gutkin et al., 2010a), whereas the

nonlinear parameters, E0f
1 and cf , were scaled from the ply-scale values, E1 and

cl, by means of the rule of mixtures as cf = cl/Vf = 18.3 (Peterson and Murphey,

2016) and E0f
1 = E1/Vf = 256 GPa. The thermoelastic constants introduced in the

constitutive model of the carbon fibers, AS4 and IM7, are gathered in Table 6.3.

Fiber/matrix interface

Fiber/matrix debonding is taken into account by means of a cohesive crack approach

similar to that described in Section 4.2.2. Nevertheless, since friction is included

in the interface constitutive behavior, a surface-to-surface master-slave interaction
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Table 6.3: Material properties of linear and nonlinear models of AS4 and IM7 carbon
fibers. Note the AS4 fiber properties are the same as those in Chapters 2, 4 and 5
(Tables 2.4, 2.6, 2.3 and 4.1).

Fiber AS4 IM7

Nonlinear
E0f

1 [GPa] 211.5 253

cf 18.7 18.3

Linear
E0f

1 [GPa] 231 276

cf 0 0

Ef
2 [GPa] 12.9 11.9

νf12 0.3 0.3

νf23 0.46 0.46

Gf
12 [GPa] 11.3 11.6

Gf
23 [GPa] 4.45 3.97

Xf
c [GPa] 3.5 3.8

Xf
t [GPa] 4.0 5.0

αf1 [◦C−1] -0.9 10−6 -0.6 10−6

αf2 [◦C−1] 7.1 10−6 5.2 10−6

d [µm] 7.1 5.1

with cohesive contact behavior was employed (Simulia, 2013), instead of the ap-

proach based on cohesive elements followed in Chapters 4 and 5. Isotropic Coulomb

friction through a single coefficient, µc, is enabled at cohesive damage initiation.

The shear stresses caused by friction at the interface, τµ, are ramped proportional

to the cohesive damage variable Dc, and can be defined as

τµc = µcDc 〈−σn〉 (6.25)

where 〈−σn〉 represents the compressive normal stress component at the interface.

Thus, once the interface is completely debonded (Dc = 1), the surface interaction is

exclusively controlled by friction, i.e. τµ = µc 〈−σn〉. The fiber/matrix interface pa-

rameters used in the simulations are presented in Table 6.4. The strengths (N c, Sc)

and friction coefficient (µc) were calibrated as described in Section 6.4.3.
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Table 6.4: Material properties of fiber/matrix interface based on Naya (2017) and
calibrated as described in Section 6.4.3.

N c Sc Ec
nn Ec

ss Gc
n Gc

s ηBK µc

[MPa] [MPa] [GPa] [GPa] [J/m2] [J/m2]

57 85 100 100 7 81 1.45 0.4

Polymer matrix

The polymer matrix is modeled through the damaged/plasticity model described

in Section 4.2.2 with the same mechanical properties as used in Chapter 4 and 5,

and shown in Table 4.3. Nevertheless, the value for the dilation angle, ψm, assumed

in Table 4.4, was determined by means of the calibration procedure described in

Section 6.4.3.

6.4.3 In-plane shear response

The mesoscale model requires the nonlinear stress vs. strain relation under in-plane

shear loading, τ12 = τ12(γ12), to derive the compressive strength of the composite.

Ideally, the parameters that define the shear response of the ply are obtained from

an experimental test that isolates the behavior of a single ply subjected to large

shear deformations. However, in the absence of such test data, the ASTM D3518

test of a ±45◦ laminate subjected to longitudinal tensile loading (ASTM D3518,

2013) is used to define the shear nonlinearity behavior. The ±45◦ laminate test

data smears a wide variety of damage mechanisms into a single stress-strain curve,

including mechanisms such as large fiber rotations and delamination, which are

not desirable to include in the shear nonlinearity characterization. Nonetheless,

the ±45◦ laminate is the most common source of material input data available for

the mesoscale model. Therefore, a new micromechanical model was designed in

order to represent the stress state of a ±45◦ laminate subjected to a tensile test,

thus combining the in-plane shear stress parallel and perpendicular to the fibers

direction simultaneously. This approach facilitates a one-to-one comparison between

the mesoscale and micromechanical models of the fiber kinking mechanism. It must

be remarked that the nonlinear shear curve of the ply, τ12(γ12), is an input of the

mesoscale CDM model and plays a crucial role in the fiber kinking phenomenon.

An RVE of a ±45◦ laminate, as shown in Figure 6.6a, was developed with the
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Figure 6.6: a) RVE of the ±45◦ finite elements model, b) cut views of the numerical
model displaying the plastic strain field in the matrix at the points, I and II, indicated
in c shear stress-strain experimental curves of AS4/8552 Marlett et al. (2011) and
IM7/8552 Wanthal et al. (2017) with the numerical curves of the micromechanical
FE model.

parameters and modeling approach described in the previous section. Under in-plane

shear loading, the model is initially linear elastic until longitudinal fiber debonding

is triggered followed by matrix shear yielding, which progressively increases, see

Figure 6.6b. The dilation angle of the matrix, ψm = 15◦, the fiber/matrix interface

strengths, N c, Sc (see Table 6.4), and the effective temperature drop, ∆T = 85◦C,

were adjusted by trial-and-error to reproduce the experimentally measured shear
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stress-strain response. The final response produced from the ±45◦ micromechanical

RVE, and the experimentally measured response of a ±45◦ laminate are nearly

identical as shown in Figure 6.6c. The parameters for the Ramberg-Osgood curves

reproducing the shear curve of the materials are found in Table 6.2.

6.4.4 Model verification

This section describes some analyses that verify the CMM modeling parameters

and demonstrate the characteristics of the model predictions. The behavior of the

fiber is assumed as linear and elastic (cf = 0) with no damage. The initial fiber

misalignment is taken as ϕ0 = 1.5◦.

Verification of model parameters

Verification studies were conducted to investigate the influence of the model length,

model size, and periodic boundary conditions for the CMM. These analyses were

carried out for an AS4 carbon fiber.

To analyze the effect of the boundary conditions on the model representativity,

two models were compared. The first model consists of the single-fiber model with

periodic boundary conditions described in Section 6.4.1. The second model consists

of a vertical array of 3-D fibers extruded along a sine curve as in the single-fiber

model, eq. 6.23, but in this case periodic boundary conditions are only applied on

the lateral faces x = 0, lx of the model; the top and bottom faces are free (Hsu

et al., 1999; Vogler et al., 2001; Bishara et al., 2017a). An increasing number of

fibers was considered in this latter model ranging from 50 up to 400. A schematic

representation of the model is presented in Figure 6.7a.

A 2-D model was also developed for comparison purposes, as shown in Fig. 6.7b,

based on the work of other authors in the literature (Vogler et al., 2001; Pimenta

et al., 2009a; Prabhakar and Waas, 2013; Wind et al., 2014). Nevertheless, since the

shear response was calibrated using a 3-D micromechanical model, the equivalence

with a 2-D model is not guaranteed.

The results indicate that the predictions of the compressive strength with the

single and multiple-fiber models are in good agreement with FKT, as shown in

Figure 6.8a. As the number of fibers increases in the multiple-fiber models, the

strength approaches the strength predicted by the single-fiber model, as shown in

Figure 6.8b. The limiting case of an infinite number of fibers is equivalent to the
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Figure 6.7: a) Multiple-fiber 3-D model consisting of 10 fibers and b) side view of
a multiple-fiber 2-D model with 100 fibers illustrating the boundary conditions and
initial misalignment angle of the fibers.

single-fiber model with periodic boundary conditions, which is in excellent agreement

with FKT.

The effect of the model length was assessed by running single-fiber 3-D models
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Figure 6.8: Sensitivity curves comparing a) the analytical solution from FKT, eq. 6.5,
with the numerical results from different FE models and b) the effect of the number
of fibers included in the multi-fiber models.
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with the following length values: 200, 300, 500, 750 and 1000 µm. The longitudinal

mesh size was kept constant at 10 µm. The stress-strain curves for ϕ0 = 1.5◦ with

the different length values are shown in Figure 6.9a. A convergent trend towards the

strength predicted by FKT is observed in Figure 6.9a as the model length increases.

The error in strength between the CMM and FKT is below 2% for L ≥ 500 µm.

Comparing the kink band rotation (maximum, ϕmax, and average, ϕavg) in Fig-

ure 6.9b, the kinematic behavior is equivalent regardless of the fiber length. In

Figure 6.9c, it is observed that the kink band width at fiber kinking initiation was

very similar, around 100 µm, for all the model lengths analyzed. The maximum

band broadening increases with the model length, as the fiber is longer and fiber

failure, which may limit band broadening, is not considered in these analyses. Nev-

ertheless, the relative kink band size is identical in all cases, wkb/L = 0.7, as shown

in Figure 6.9d. These results show that the kink band width at initiation only de-

pends on the fiber diameter, d, but the band broadening after the kink has formed

is affected by the far-field boundary conditions.

Based on these analyses, the single-fiber 3-D model with periodic boundary con-

ditions and L = 500 µm was selected as the most suitable and representative model

to analyze the fiber kinking phenomenon in terms of stress-strain curve and kink

band kinematics. This version of the CMM model is used as the nominal configu-

ration throughout the remainder of this report.
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Figure 6.9: a) Stress-strain curves for the single-fiber 3-D model with ϕ0 = 1.5◦ for
different model lengths, L; b) kink band rotation, maximum and average, ϕmax and
ϕavg; c) kink band width, wkb; and d) relative kink band size, wkb/L.

Sequence of events in the kinking process

The sequence of events observed in the CMM model is illustrated in Figure 6.10. As

the compressive load increases, σc, the shear stress along the matrix grows due to the

fiber initial misalignment (eq. 6.15) and starts yielding along a narrow band at the

center of the imperfection (point i). The yielded region continues spreading in the

longitudinal direction until the yield band is wide enough to promote local rotation

of the fiber (point ii), leading to the formation of a kink band (point iii). The

same sequence of events prior to fiber kinking was observed by Davidson and Waas

(2014). Fiber rotation originates a sudden drop in load carrying capacity and results

in the kink band, which corresponds to the region where the matrix has deformed

plastically. This region is bounded by the fiber sections with the highest bending

stresses. The fiber/matrix interface also participates by triggering the kinking of
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the fiber. When the interface is damaged, the fiber cannot transfer part of the shear

load to the matrix resulting in premature kinking failure.

Due to the single-fiber model design and the periodic boundary conditions, once

the kink band appears it is assumed that it has already propagated simultaneously

across the whole ply. Therefore, transverse propagation cannot be observed with

this model. Instead, as the compressive strain, εc, increases the kink band keeps

growing along the fiber direction. This phenomenon is known as band broadening,

and can be observed experimentally once the kink band has fully propagated across

the specimen (Moran et al., 1995). Band broadening is accompanied by progressive

fiber rotation, while the compressive stress gradually decreases. This sequence of

events is also observed with periodic models including several fibers (Naya et al.,

2017b).

Neither the tensile nor compressive strengths of the fiber are reached for the

model parameters considered here. Small values of initial misalignment do result

in fiber damage, as discussed later in Section 6.5.2. For small values of initial

misalignment, ϕ0 < 1◦, the fibers fail under pure compression resulting in a constant

compressive strength value, Xc, regardless of ϕ0 (Gutkin et al., 2010a). However,

fiber breakage was not observed in the models with initial misalignment higher

than 1◦, neither at fiber kinking initiation, nor during kink band broadening. Such

predictions seem unrealistic since nearly all experimental observations of kink bands

show broken fibers. It can be concluded, then, that more realistic failure models for

the fibers are required to address this deficiency.
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Figure 6.10: Summary of the sequence of events prior to and after fiber kinking for
AS4/8552 with ϕ0 = 1.5◦: a) compressive stress vs. strain curve including maximum
fiber rotation, ϕmax; b) plastic shear deformation of the matrix at the points indi-
cated in (a); c) fiber/matrix interface damage evolution; and d) longitudinal stress
along the surfaces with the highest bending stresses of the fiber.
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Kink band angle

The use of periodic boundary conditions in the CMM single-fiber model forces the

kink angle, β, to be zero (Gutkin et al., 2010a). Since the model predicts the residual

stress, σr, the effective kink band angle can be estimated by rearranging eq. 6.12 as

β̃ =
1

2
arcsin

(
2τL
σr

)
(6.26)

Using eq. 6.26 with the residual stress values from the CMM ranging between 600 and

400 MPa from fiber kinking initiation up to 3% strain (as shown in Figure 6.9a) and

assuming a shear yield stress τL = 95 MPa (at 5% strain in Figure 6.6b), the resulting

effective kink angle is found to be between 9◦ and 14◦. This range for β̃ agrees well

with values reported in an experimental study carried out in parallel through X-Ray

computed tomography observation of fiber kinks in IM7/8552 (Bergan and Garcea,

2017).

For the sake of completeness, a 3-D multiple fiber model was used to measure the

kink band angle, β. The model is similar to the 3-D multiple-fiber model described

in Section 6.4.4, but includes an inhomogeneous initial misalignment on one of the

efges to trigger fiber kinking following the approach of Vogler et al. (2001). To

improve the stability of the problem, loading is applied in two steps (Vogler et al.,

2001). First, a constant compressive stress, σc, in the fibers direction is applied

up to a subcritical level. Then, an in-plane shear load, τ12, is increased until fiber

kinking takes place. The kink band initiates on the free edge where the larger initial

misalignment is located and propagates across the model with a β angle of 12◦ and

a constant band width, wkb = 100 µm, as shown in Figure 6.11. The values for β

and wkb are in good agreement with the values obtained from the single-fiber model.

Some kink band angle values reported in the literature for carbon reinforced

composites are shown in Table 6.5. Although a variety of experimental techniques

were employed to promote the fiber kinking failure mechanism, it is observed that

typical values of β are found between 10◦ to 20◦ in most cases, agreeing reasonably

well with the results of the 3-D multiple-fiber numerical model and the experimental

observations from Bergan and Garcea (2017).

From the shear stress-strain curve, Moran’s energy-based analytical model (Moran

et al., 1995) is able to predict the residual stress and the β angle for fiber kinking

assuming there is no change of volume in the material, thus ϕ = 2β. The values
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Figure 6.11: Multiple-fiber 3-D model based on Vogler et al. (2001) to obtain the
kink angle, β, of AS4/8552, showing a) detail view of the strain field along the fibers
in the kink band and b) shear deformation of the matrix highlighting the β angle
and the wkb along with the model geometry and boundary conditions.

obtained from this model using the Ramberg-Osgood shear stress-strain curve (sub-

stituting eq. 6.4 in eq. 6.13 and minimizing with respect to β) are similar for both

AS4/8552 and IM7/8552, due to the similar shear behavior. The predicted residual

stress, σr, is around 300 MPa, with β = 40◦. Although the estimation for σr is rea-

sonable when compared to the results of the models presented in this work, the kink

band angle is not in good agreement with the CMM. This mismatch is likely a result

of the fact that the CMM includes compressibility of the matrix and is therefore not

restricted to Moran’s assumption of ϕ = 2β. It also should be noted that using the

residual stress from the CMM predictions, σr = 400 MPa, in Moran’s model results

in β ≈ 18◦, which is in much better agreement. Vogler et al. (2001) showed that β

depends on the pressure sensitivity and dilation of the matrix, which may explain

the difference between the present numerical model and Moran’s analytical model.
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Table 6.5: Kink band angle values reported in the literature from experiments and
numerical models.

Reference Method Material system β [◦]

Jelf and Fleck (1992) Experimental AS4/PEEK 16

Couque et al. (1993) Experimental Carbon/PEEK 20-30

Fleck and Jelf (1995) Experimental Carbon/epoxy 10-15

Moran et al. (1995) Experimental Carbon/PEEK 12-22

Kyriakides et al. (1995) Experimental AS4/PEEK 12-16

Kyriakides et al. (1995) Experimental AS4/PEEK 10-12

Vogler and Kyriakides (2001) Experimental AS4/PEEK 12-15

Vogler et al. (2001) Numerical AS4/PEEK 5-17

Pinho et al. (2006) Experimental Carbon/epoxy 22-28

Lee and Soutis (2007) Experimental IM7/8552 5-30

Pimenta et al. (2009a) Numerical Carbon/epoxy 8-10

Bishara et al. (2017a) Numerical Carbon/epoxy 14-17

Bergan and Garcea (2017) Experimental IM7/8552 15-25

6.5 Correlation between the mesoscale and micromechanical
models

The predictions of the micromechanical model (CMM) were compared with the

predictions of the mesoscale model (CDM) to understand the role of the simplifying

assumptions in the latter. In this section, the micromechanical model assumes the

fiber behaves as a nonlinear elastic solid (cf 6= 0) considering tensile and compressive

failure, except where noted. The mesoscale finite element model is composed of one

cubic C3D8R element with an edge length of 0.15 mm. The material properties used

in the mesoscale analysis are provided in Table 6.2. In both analyses, end shortening

displacements in the longitudinal direction were prescribed.

Additionally, analytical models from the literature are compared with the CMM

and CDM results where applicable (e.g. stress-strain curves, compressive strength

sensitivity curves and fiber/kink band rotation). The assumptions followed to char-

acterize the shear response of the material are fundamental to the prediction of fiber

kinking for all of the models considered. The characteristic shear curves for the dif-

ferent models considered are shown in Figure 6.12. Argon’s expression, eq. 6.2,
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Figure 6.12: Experimental nonlinear shear curves for AS4/8552 and IM7/8552 and
simplified curves of other models: perfectly-plastic of Argon’s model (Argon, 1972),
elastic perfectly plastic (EPP) and Pimenta’s model with a modified shear modulus,
G2D
m (Pimenta et al., 2009b).

considers the matrix as a rigid perfectly-plastic solid (Argon, 1972). A value of

80 MPa was assumed as the yield limit of the matrix under shear. On the other

hand, Pimenta’s model assumes an elastic-perfectly plastic (EPP) response in shear

for the matrix and is based upon micromechanical features such as fibers packing

and fibers cross section (Pimenta et al., 2009b). The shear modulus is defined as

G2D
m = Gm/(1−V 2D

f ) = 10.06 GPa, and the shear yield limit is set to τY = 80 MPa.

Fiber kinking theory does not need to simplify the shear response of the material, for

this reason a more representative constitutive nonlinear response can be used. For

comparison, an EPP shear response will be analyzed applying the FKT approach

with τY = 80 MPa using eq. 6.3.

6.5.1 Stress vs. strain response

The predicted stress-strain curves for a variety of initial fiber misalignments, ϕ0 of

1.5, 2, 2.5, 3, and 4◦ indicate a remarkable agreement between the results of the two

models (CDM and CMM), as shown in Figure 6.13a for AS4/8552. The compressive
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Figure 6.13: Stress-strain curves for the CMM and CDM models of AS4/8552 in-
cluding nonlinear response of the fibers (cl, cf 6= 0 in eqs. 6.22 and 2.3) for a) a
range of initial fiber misalignments (ϕ0 = 1.5, 2, 2.5, 3 and 4◦), and b) comparison
with analytical models of the literature: FKT (Hsu et al., 1998) and Pimenta et al.
(2009b) for ϕ0 = 2◦. Residual crushing stress, σr, is estimated from eq. 6.12.

stress, σc, is the nominal stress calculated as the reaction force divided by the

original area, and the compressive strain, εc, is the end shortening divided by the

original length. Both models predict the initial elastic response, strength, subsequent

collapse, and finally a non-zero residual stress. Since the energy released during

instability is large for small values of ϕ0, some vibrations are predicted by both

models immediately after the instability. The transition from a strong instability

(snap-back) to a smooth response occurs between ϕ0 = 2.5◦ and 3◦ for both material

systems. The value of ϕ0 at which the transition to snapback occurs can be estimated

from FKT as the smallest value of ϕ0 for which there exists a local maximum of

eq. 6.7. The results in Figure 6.13a illustrate that both models predict a dependence

of the peak load on ϕ0 whereas the predicted residual stress, σr, is independent of ϕ0,

which is consistent with fiber kinking theory. Some authors like Moran et al. (1995)

proposed the residual stress to be a material property. A range of σr calculated

using eq. 6.12 is superimposed on Figure 6.13 showing very good agreement with

the models predictions. The values reported in an experimental investigation on

IM7/8552 (Bergan and Garcea, 2017), were used in eq. 6.12 (shear strength at 5%
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strain τL = 95 MPa and β = 12◦ to 16◦). The residual stress is expected to follow

an asymptotic trend at large uniaxial compressive strain (εc > 20%) as shown in the

material model developed by Gutkin et al. (2016), which yields an asymptotic value

around 230 MPa for another carbon fiber reinforced epoxy resin (HTS45/LY556).

The excellent agreement between the two models for strength, subsequent instability,

and residual stress suggests that the most significant features of the kinking process

are captured by the relatively simple mesoscale model. Furthermore, the agreement

between the two models demonstrates that ignoring fiber bending appears to be

a reasonable assumption for relatively small carbon fibers with large wavelength

misalignments. Similar results were obtained from both CDM and CMM models for

IM7/8552 material system.

Of the analytical models, only Hsu’s augmentation of FKT (Hsu et al., 1998) and

Pimenta et al. (2009b) provide a complete stress vs. strain response. The results

obtained from these two models are plotted next to the CMM and CDM curves

in Figure 6.13b for ϕ0 = 2◦. Regarding Pimenta’s model, it is observed that the

stiffness of the system is constant up to the peak-load because it does not include the

nonlinear elastic behavior of the fiber. The strength predicted by this model through

eq. 6.14 is slightly different as it considers a linear-elastic perfectly-plastic response

of the composite material under shear, instead of the more realistic strain-hardening

shear response employed by the CMM and CDM models. A compromise value for

the yield limit under shear, τY , was selected for comparison with the rest of the

models in terms of compressive strength and residual stress (τY = 80 MPa). During

fiber kinking, the snap-back phenomenon is captured because the analytical model

is not displacement-controlled. A lower residual stress, σr, is predicted compared to

the other models. The main feature responsible for the difference in σr is the shape

of the shear curve. In the analytical model, the absence of strain hardening makes

the residual stress level lower. This effect is also noticed in the kinematics of the

problem, as discussed in Section 6.5.3. On the other hand, Hsu’s model predicts the

same compressive strength, since it is based on FKT applied to the same nonlinear

shear curve, but the stiffness of the composite up to collapse is slightly higher as the

fiber modulus is assumed to be constant. The residual stress predicted agrees very

well with the CDM and CMM models.
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Figure 6.14: Compressive strength sensitivity curves, Xc vs. ϕ0: a) comparison of
the CMM results and FKT predictions, and b) comparison of the strength predicted
FKT by various analytical models for AS4/8552 (Argon, 1972; Budiansky, 1983;
Barbero, 1998; Pimenta et al., 2009b).

6.5.2 Imperfection sensitivity curves

The compressive strength, Xc, predicted by FKT, eq. 6.5, and the CMM single-fiber

model are shown in Figure 6.14a as a function of ϕ0 for AS4/8552 and IM7/8552.

Very good agreement is observed between the two models for ϕ0 ≥ 1◦, which is

attributed to the similarity of the nonlinear shear response in the two models (Fig-

ure 6.6). Though not shown, the predictions by the mesoscale model are identical

to the FKT results, as is expected since the mesoscale model is based on FKT. The

strength sensitivity curve provides a one to one relation between Xc and ϕ0, such

that, for the typical compressive strengths of the materials addressed in this work

(horizontal lines in Figure 6.14a), a representative value of ϕ0 is obtained: 1.2◦ and

1.6◦ for IM7/8552 and AS4/8552 respectively.

For very small values of initial misalignment, ϕ0 < 1◦, the CMM model predicts

fiber failure due to pure longitudinal compression, instead of fiber kinking. A cut-off

strength point is found at Xc = Vf ·Xf
c , yielding 2100 and 1920 MPa for AS4/8552

and IM7/8552 respectively.

Imperfection sensitivity functions, Xc(ϕ0), predicted by other analytical models

are shown in Figure 6.14b. All the models predict a critical effect of the initial

misalignment, ϕ0, on the compressive strength of the unidirectional fiber-reinforced
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composite, Xc. The sensitivity to the initial misalignment, ∂Xc/∂ϕ0, is more critical

for the low misalignments range. Argon’s model predicts the highest strength for the

range of misalignments considered, going to infinity for the limit ϕ0 = 0◦. The two

FKT predictions show the effect of the Ramberg-Osgood shear curve as compared

with the EPP shear curve. In both cases, FKT has an upper limit Xc(ϕ0 = 0) = G12.

Pimenta’s model is very close to the solution obtained from the equivalent EPP

shear curve by means of FKT. The assumptions and strategy followed by Pimenta

could be extended for different nonlinear shear curves as proposed by the author

(Pimenta et al., 2009b). Finally, the analytical model developed by Barbero (1998)

reads a similar strength-misalignment trend, for this case a half-normal statistical

distribution of the fibers misalignment was assumed with zero mean and standard

deviation of ϕ0.

6.5.3 Fiber rotation

The fiber rotation angle, ϕ, is shown in Figure 6.15a as a function of the longitudinal

strain for ϕ0 ranging from 1.5◦ to 4◦ for AS4/8552. Since ϕ = ϕ(z) in the CMM,

two definitions for ϕ are plotted for comparison with the fiber rotation predicted

by the CDM model, labeled ϕCDM in the figure. The maximum fiber rotation in

the CMM takes place at z = L/2 and is denoted as ϕmax
CMM. The average rotation

of the kinked fiber is calculated from the transverse deflection at the end of the

fiber, uy, and the kink band width, wkb, as ϕavg
CMM = tan−1(uy/wkb). In all cases,

the fiber misalignment shows slight rotation (ϕ ≈ ϕ0) prior to the strain at which

the peak load is attained. When the critical strain corresponding to the peak load

is reached, the fiber rotates rapidly into the kinked configuration, which is seen

as the abrupt change in ϕ in Figure 6.15a at εc ≈ 1%. The rotation is much

more abrupt for small imperfections than for large initial misalignments. Under

yet higher strains (in the strain regime that corresponds with the residual stress,

εc ≥ 1.5%) the fibers continue to rotate at a constant rate with increasing εc. The

fiber rotation predicted by the CDM is bounded by the average and maximum ϕ from

the CMM. It could be argued that ϕCDM should match ϕmax
CMM since both represent

the critical or maximum fiber misalignment. The difference between ϕCDM and

ϕmax
CMM is most likely due to considerations of fiber bending and periodic boundary

conditions in the CMM, both of which affect the fiber rotation and are not included

in the CDM. Nonetheless, the agreement between the two models is remarkable

and, thus, highlights further efficacy of the relatively low-fidelity mesoscale model at
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Figure 6.15: Fiber rotation curves for the CMM and CDM models of AS4/8552
including nonlinear response of the fibers (cl, cf 6= 0 in eqs. 6.22 and 2.3) for a) a
range of initial fiber misalignments (ϕ0 = 1.5, 2, 2.5, 3 and 4◦), and b) comparison
with analytical models of the literature: FKT (Hsu et al., 1998) and Pimenta et al.
(2009b) for ϕ0 = 2◦.

representing the large rotations associated with the fiber kinking process as predicted

by the high-fidelity micromechanical model. Similar results were obtained from both,

CDM and CMM, models for IM7/8552 material system.

Results from the model proposed by Pimenta et al. (2009b) are included in Fig-

ure 6.15b displaying the maximum rotation of the fiber during kinking. In qualitative

terms, the same features are represented: fiber rotation is negligible up to the point

when the fiber kinking mechanism is triggered. Then, sudden rotation of the fibers

happens during snap-back. Finally, under large compressive strains, the fibers keep

rotating gradually. However, quantitatively, the analytical predictions for ϕ rise be-

yond 20◦ at ε = 2%; which is much higher than ϕ ≈ 14◦ predicted by the mesoscale

and micromechanical models at the same strain level. The main simplification of the

analytical model consists of assuming an elastic perfectly-plastic shear response of

the matrix. By ignoring strain-hardening, the analytical model underestimates the

shear stiffness at large strains and, therefore, overpredicts ϕ. Nevertheless, the ana-

lytical estimate of the fiber rotation by the FKT model is equivalent to the average

fiber rotation obtained from the micromechanical model, ϕavg
CMM, see Figure 6.15b.
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It is important to notice that Hsu’s analytical model (Hsu et al., 1998) employs

the characteristic Ramberg-Osgood nonlinear shear curve which is introduced in the

CDM model, see Figure 6.6c.

6.5.4 Fiber nonlinearity

The effect of fiber nonlinearity on the mechanical response of the CMM and CDM

models is illustrated in Fig. 6.16. Both models account for fiber nonlinearity and

therefore show a pre-peak reduction in stiffness. The resulting compressive strength,

Xc, is not affected. However, fiber nonlinearity increases the strain to failure from

1% to 1.2% for AS4/8552 with ϕ0 = 2◦ in both models. Kink band rotation is not

affected once the fiber kinking phenomenon is triggered, following the same rotation

rate (∂ϕ/∂εc).
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Figure 6.16: Comparison of the CMM and CDM models for AS4/8552 with and
without nonlinearity of the fibers for ϕ0 = 2◦: a) stress-strain curves and b) fiber
rotation.
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Table 6.6: Comparison of kink band width values, wkb.

Material CDM CMM Eq. 6.21 Fleck and Jelf (1995) Pimenta et al. (2009b)

[µm] [µm] [µm] [µm] [µm]

AS4/8552 100 90− 120 50 85 62− 118

IM7/8552 50 50− 70 38 70 48− 93

6.5.5 Kink band width

The kink band width, wkb, was computed with the micromechanical model as the

distance between the points with the highest bending stress along the fiber at the

maximum load applied, following Pimenta et al. (2009b). The CMM shows wkb ∝ d,

as reported in the literature (Budiansky, 1983; Jelf and Fleck, 1992). The results

for wkb predicted by the CMM model are presented in Table 6.6, and compared

with the results of other analytical models from the literature which consider fiber

bending (Budiansky, 1983; Fleck and Jelf, 1995; Pimenta et al., 2009b).

The CDM model does not consider fiber bending, as detailed in Section 6.3, so a

kink band width value must be specified as input of the model. The values employed

in the CDM model are reported in Table 6.6 and are based on the CMM results,

analytical models from the literature (Budiansky, 1983; Fleck and Jelf, 1995) and

experimental observations (Table 6.1). The selection of wkb has an important effect

on the post-peak response of the model as shown in Figure 6.17. Wider kink bands

arrest kink band rotation (see Figure 6.17b), thus enhancing the residual stress

sustained by the material during the softening regime. Most of the band rotation

occurs abruptly during the load drop right after the peak stress is reached.
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Figure 6.17: Effect of the kink band width, wkb, on the CDM constitutive model: a)
stress-strain curve and b) kink band rotation. Curves obtained for AS4/8552 system
with ϕ0 = 2◦ and cl = cf = 0.

6.6 Parametric study with the micromechanical model

Taking advantage of the CMM single-fiber model presented in Section 6.4.1, a para-

metric study to analyze the effect of the fiber/matrix interface strength on the fiber

kinking mechanism was carried out. For the sake of efficiency, the results shown in

this section do not include fiber nonlinearity, cf = 0, nor fiber failure.

6.6.1 Effect of fiber/matrix cohesive interface

A parametric study on the fiber/matrix cohesive interface strength was carried out

to analyze its effect on the fiber kinking mechanism. To this end, the single-fiber

CMM model with an initial misalignment of ϕ0 = 2◦ was simulated for different

interface shear strengths, Sc = 21, 63, 85 and 300 MPa. The baseline case with

Sc0 = 85 MPa corresponds to the results presented in Section 6.5 and the interface

properties of Table 6.4. For the other interface shear strength cases, the normal

strength and fracture energies were scaled accordingly. The case where Sc = 300

MPa, represents a perfect interface model. The fiber/matrix friction coefficient

was kept constant, µc = 0.4, except where noted. It should be remarked that the

interface shear strength employed as baseline in this chapter was selected by fitting

the nonlinear shear curve of the ply, see Section 6.4.3 for a more detailed explanation.

The results of this analysis are summarized in Figure 6.18. A low interface
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Figure 6.18: Effect of fiber/matrix interface shear strength of AS4/8552 with ϕ0 =
2◦: a) stress-strain curves and b) fiber rotation curves. Snapshots of the FE models
at εc = 1.35% plotting c) the shear strain, γ12, and d) the interface shear slippage
in the longitudinal direction, δcs.

strength triggers fiber kinking earlier reducing the compressive strength as shown

in Figure 6.18a for the cases with Sc = 21 MPa and 63 MPa. On the other hand,

when the interface shear strength is higher than the shear yield limit of the matrix,

Sm = 80 MPa, then fiber kinking is activated by matrix shear instability regardless

of the interface strength. For this reason, considering a perfect interface does not

increase the compressive strength of the material.

The residual stress, σr, is not only dependent on the matrix yield limit in shear,
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Sm, but also on the ability of the interface to transfer load between the matrix and

the fiber. A strong interface is able to sustain the shear loads on the interface and

promotes the plastic shear deformation of the matrix as shown in Figure 6.18c for

the case with Sc = 85 MPa. On the other hand, if the interface is weak, it fails

prematurely and the matrix slips along the fiber when the interface shear stress over-

comes the interface shear strength, preventing plastic deformation of the matrix. In

Figure 6.18d, it is observed the interface shear slippage in the longitudinal direc-

tion, δcs, is much higher for the weak interface case, going up to 1.4 µm, compared to

0.5 µm for the stronger interface (85 MPa) over a larger fiber surface. According to

this hypothesis, the perfect interface case can be employed as an upper bound of σr

as it further exploits the potential of the matrix to dissipate plastic energy through

shear deformation.

The effect of a frictionless interface was observed after the load drop due to fiber

kinking. Although, friction does not participate until the fiber/matrix interface is

damaged, it plays a role arresting fiber rotation during the post peak regime. In

absence of friction, fiber rotation can only be arrested by fiber bending and matrix

hardening due to the hydrostatic pressure induced by ϕ, thus fiber rotation in the

CMM model with µc = 0 is higher as shown in Figure 6.18b. The additional fiber

rotation results in a lower residual stress, σr = 395 MPa as compared to 540 MPa

of the baseline case at εc = 2%.

6.7 Concluding remarks

A high-fidelity computational micromechanics model (CMM) was developed to widen

the understanding of the fiber kinking mechanism and to assess the extent to which

the mesoscale continuum damage mechanics (CDM) model captures the key features

of fiber kinking (Herráez et al., 2018a).

The computationally efficient CMM finite element model consists of a 3-D single-

fiber that was previously demonstrated to capture the representative phenomena

of fiber kinking. The model considers nonlinearity in the fiber, matrix plasticity,

and fiber/matrix interface debonding as well as geometric nonlinearity. The most

significant difference between the CMM and CDM models as related to fiber kinking

is that the CMM includes fiber bending whereas the mesoscale model does not. The

CMM predicts that fiber kinking occurs with the following sequence of events: i)

yielding in the matrix begins in a narrow band near the maximum misalignment,
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well before peak load; ii) then, under increasing load, yielding in the matrix spreads

in the longitudinal direction until the yielded region is large enough to promote local

rotation of the fiber; iii) next, instability due to fiber rotation and matrix yielding

leads to the formation of the kink band; and iv) finally, the rotation of the fibers

is arrested once the angle becomes large enough. The kinking process predicted by

the CMM is in good agreement with other micromechanical models in the literature

(Davidson and Waas, 2014).

The CDM model based on the fiber kinking theory was developed by A.C. Bergan

from NASA Langley Research Center (Bergan and Leone, 2016). This model has a

stress-strain response that includes a sharp drop due to the onset of fiber kinking,

followed by a nonzero residual stress. Furthermore, the mesoscale model tracks the

fiber rotation through the kinking response such that longitudinal shortening de-

formation is coupled with shearing deformations. These characteristics arise from

consideration of material nonlinearity in the shear stress-strain behavior and large

fiber rotations. Thus, the constitutive response is not prescribed directly. Rather, it

is a result of the fundamental material and geometric nonlinearities that contribute

to the fiber kinking process. Verification studies demonstrated that the mesoscale

model reproduces strength, fiber rotation, and residual stress in excellent agreement

with fiber kinking theory. The mesoscale model makes use of the deformation gra-

dient decomposition (DGD) technique to enable mesh objectivity. The reader is

referred to Herráez et al. (2018a) for a detailed description of the implementation

of the CDM model.

Correlations between the microscale and mesoscale models serve as a basis for

assessing the representativity of the fiber kinking process achieved by the mesoscale

model. In this work it is also explored the potential of an efficient single-fiber model

to capture, not only the failure initiation due to fiber kinking, but also the phenom-

ena observed during the post peak regime (fiber rotation, kink band generation and

broadening, residual stress...). To focus the comparisons on the characteristics of the

two models instead of differences in input properties, the CMM was calibrated with

the same shear nonlinearity response used in the mesoscale model. The comparison

between the mesoscale and microscale models was made through the analysis of the

corresponding stress-strain curves (σc vs. εc) and the kinematics of fiber kinking (ϕ

vs. εc). Analyses were also conducted to study the influence of the kink band width

wkb and the kink band angle β.

The elastic response of the microscale and mesoscale models showed very good
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agreement, both with and without consideration for elastic nonlinearity in the

fibers. It was noted that the coefficients of fiber nonlinearity for the microscale

and mesoscale models are related by the rule of mixtures. The strength predicted

by the two models is a function of the initial misalignment angle and is nearly iden-

tical for 1◦ < ϕ0 < 4◦. Small values of ϕ0 lead to fiber compression failure, which

is only accounted for in the CMM. Fiber kinking occurs as an instability due to

interaction between fiber rotation and shear nonlinearity of the material. The two

models predict similar values of strain for the onset of the instability.

The residual stress, σr, predicted by the two models is in excellent agreement,

with both models showing a slight decay under increasing compressive strain. It

was demonstrated that the value of σr is a function of the width of the kink band

and fiber rotation. Despite the fact that the mesoscale model does not include fiber

bending, the results for fiber rotation (ϕ vs. εc) throughout the kinking process

show excellent agreement between both models. Both models show a jump in the

fiber rotation at the onset of fiber kinking, followed by the progressive rotation of

the fiber as the compressive strain increases.

The kink angle β is assumed to be zero in both models. While experimental

measurements uniformly show nonzero values for β (see Table 6.5) the two models

are nonetheless able to capture the residual stress level in good agreement with

models in the literature that account for β 6= 0. An effective β̃ angle can be estimated

through eq. 6.12 yielding 10◦ to 15◦, which is in agreement with an experimental

study carried out through X-ray CT in IM7/8552 (Bergan and Garcea, 2017). A

multi-fiber micromechanical 3-D model based on Vogler et al. (2001) was employed to

verify the β angle estimation. The multi-fiber model yielded β = 12◦, supporting the

estimation using eq. 6.12, and is in good agreement with experimental measurements

(Bergan and Garcea, 2017).

The mesoscale CDM model requires the kink band width wkb as an input pa-

rameter. This value may be estimated from analytical models that consider fiber

bending like Budiansky (1983) and Fleck and Jelf (1995), measured experimentally

(Bergan and Garcea, 2017) or computed numerically using micromechanical models

like the CMM model presented based on recent work of Naya et al. (2017b).

The correlation between the results of the mesoscale and micromechanical models

is remarkable in terms of strength, post-peak residual stress, and fiber rotation. The

quality of the correlation indicates that the significant features of the kinking process

are included in the relatively simple mesoscale model. The CMM model validates the
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CDM model considering fiber kinking is extremely hard to study experimentally in a

controlled manner. Recovering the bottom-up multiscale approach, the CMM single-

fiber model is a very efficient approach to represent the fiber kinking phenomenon

and can be used to extract parameters for a homogenized model, herein the CDM

model, like the residual stress level, and the kink band width.

A parametric analysis was conducted using the CMM to explore opportunities

to improve longitudinal compression strength. It was shown that the fiber/matrix

interface properties (stress transfer between the fibers and the matrix) not only have

an important effect on the compressive strength, Xc, but also play a major role on

the residual crushing stress, σr. If the interface is very weak, the fiber slides during

kinking and the matrix is not deformed plastically. Hence, the accurate character-

ization of the interface properties arises as a crucial task to feed micromechanical

models to achieve representative results. Fiber/matrix friction only has a positive

effect on σr, reducing fiber rotation through the additional interface shear stress

introduced by the friction coefficient.

The results of this chapter, together with a more detailed description of the CDM

constitutive model implementation, and an application case in a mesoscale virtual

test have been published in Herráez et al. (2018a).
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7Conclusions

7.1 Closing of the thesis

During the last years, the Composite Materials Group (CMG) at IMDEA Materi-

als has focused its work towards the development of a full description of the me-

chanical response of composite laminated materials through a bottom-up multiscale

approach (Llorca et al., 2011; Lopes et al., 2016). This thesis is embedded within

the microscale framework of this multiscale approach and is focused not only in the

development of novel virtual micromechanical models, but also on the experimental

characterization of the constituents at the micro-level.

In particular, the aim of this work was the development of numerical microme-

chanical models in order to improve our understanding of some of the failure mech-

anisms exhibited by unidirectional fiber-reinforced composites, especially in terms

of damage propagation, and the transfer of this information towards the mesoscale

level of analysis. Complementary, an experimental procedure to characterize the lon-

gitudinal properties of the reinforcement constituent, i.e. the fibers, was presented.

The main conclusions achieved during this work are drawn along the following para-

graphs.

� Within the framework of the multiscale analysis research line of the CMG, the

mechanical characterization of the reinforcement phase, the fibers, remained

as a pending task. State-of-the-art techniques were employed to measure the

longitudinal properties of different types of fibers (carbon, glass and aramid).

In this regard, ex situ single-fiber tensile tests were carried out on FIB-notched

fibers to obtain their effective tensile fracture toughness, Gf
t , while unnotched

specimens were dedicated to characterize the elastic response of the fibers
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in the longitudinal direction (Herráez et al., 2016a). In the case of carbon

fibers, the characteristic nonlinear elastic response was fitted through a single-

parameter model, cf . Besides, a new technique to measure the longitudinal

compressive strength of fibers, Xf
c , was designed: micropillars were FIB-milled

on the cross section of fibers within a composite ply and then compressed by

nanoindentation until failure. The results obtained by means of experimental

micromechanics agree reasonably with other experimental techniques (Oya

and Johnson, 2001; Kant and Penumadu, 2013) from the literature or the

consequent ply-scale properties (Peterson and Murphey, 2016).

� An efficient and versatile methodology for the generation of periodic mi-

crostructures with arbitrary fiber shapes and sizes, which is able to achieve

very high fiber volume fractions, was implemented. In fact, a user interface

implementing this generation algorithm (Viper), plus other state-of-the-art al-

gorithms were developed in order to facilitate and speed up the pre-processing

stage of micromechanical analysis.

� A numerical framework to evaluate fracture processes in quasi-brittle materi-

als, based upon small scale bridging conditions (SSB), was developed (Herráez

et al., 2018b). The main benefit of this framework is the ability to provide

geometry-independent crack resistance curves (R-curves), through the appli-

cation of the displacements field associated with the KI linear elastic fracture

mechanics stress intensity factor. This framework was applied to the study of

the intralaminar fracture behavior of a crack growing in the direction trans-

verse to the fibers for a carbon/epoxy UD ply, G2+. Moving towards a homog-

enized mesomechanics scheme, a traction-separation cohesive law was analyti-

cally derived from the R-curve obtained with the micromechanical model, and

validated numerically by guaranteeing that the fracture behavior was properly

captured at the meso level. The SSB framework shows a high potential to

homogenize the fracture process of the material by means of a cohesive law

by lumping the actual damage mechanisms of the microstructure, thus, en-

abling the transference of information between length scales, micro and meso,

as for instance, in a mesoscale constitutive model used to represent individual

composite plies (e.g. LaRC04, CompDam, Falcó et al. (2018)).

� The failure mechanism of fiber kinking was studied from a computational

micromechanics perspective (Herráez et al., 2018a). The great influence of the
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nonlinear in-plane shear response of the composite ply on the fiber kinking

mechanism was corroborated, as stated by the analytical models available in

the literature (Pinho et al., 2005). The CMM model was successfully employed

to assess the extent to which a mesoscale continuum damage mechanics (CDM)

model, developed by A.C. Bergan (Bergan and Leone, 2016), captures the key

features of fiber kinking.

To sum up, the numerical methods/models presented in this thesis are promising

in terms of virtual characterization of the damage and fracture processes of FRPs.

Nevertheless, further experimental validation of these techniques is required to as-

certain numerical results and determine the reliability of these tools, since they are

intended to be the main source of input parameters for the mesoscale constitutive

models.

7.2 Proposed future research

In spite of the experimental effort carried out by CMG, together with that of this

thesis; there are still important gaps in terms of constituent properties characteri-

zation that are crucial to enhance the accuracy of micromechanical models.

Continuing with the previous classification of experimental and computational

developments, the recommended future works are the following.

� The most elusive constituent to be experimentally characterized is the fiber/matrix

interface. A number of features, namely the normal strength, N c, fracture en-

ergies, Gc
n, G

c
s, and the friction coefficient, µ, have not been measured yet and

they play a fundamental role on the interface debonding failure mechanism.

The FIB technique shows up as an opportunity to design in situ experimental

configurations to measure the parameters that are missing.

� Characterization of the matrix under tensile loading should be performed

through in situ microtests in order to understand the failure mechanisms of

the polymer matrix at the microlevel, together with defects distribution.

� Motivated by the numerical models developed to study the fiber kinking phe-

nomenon, a better comprehension of the fibers failure under shear loads is

mandatory. New experimental techniques could be developed to introduce,
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in a controlled manner, a measurable shear stress field along the fiber up to

failure.

Some of the computational future works that arise naturally from this thesis are

the following:

� The CMM strategy allows the exploration of innumerable possibilities in mi-

crostructural design such as: analysis of hybrid composite microstructures

(Swolfs et al., 2014), reproduction of multi-axial stress states and calculation

of failure envelopes (Naya et al., 2017a), and quantification of the effect of

fiber volume fraction on ply properties (Ghayoor et al., 2018), among others.

� The small scale bridging (SSB) framework presents a great potential to char-

acterize the different fracture modes not only of a fiber-reinforced polymer,

but also other quasi-brittle heterogeneous materials. In a few years, other 3-D

fracture mechanisms like the translaminar crack propagation (González and

Llorca, 2006) could be explored with this technique considering a rather large

number of fibers.

� The applicability of the SSB framework should be illustrated for mesoscale

showcases, to demonstrate the representativity of the cohesive laws derived by

this method compared to the standard linear ones as in Dávila et al. (2009).

To conclude, application of computational micromechanics shows up as an ideal

numerical technique not only to evaluate elastic and strength properties, but also

failure mechanisms and damage propagation processes in great detail. Indeed, CMM

is perfectly suited to provide the input parameters required by phenomenological

mesoscale constitutive models, e.g. LaRC04 (Pinho et al., 2006), CompDam (Leone

et al., 2018), Falcó et al. (2018).
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ANon-circular fibers geometry

Various non-circular cross sections were designed based on a literature review in this

research field (Edie et al., 1986; Edie and Stoner, 1993; Edie and Dunham, 1989).

These fiber cross sections have been implemented within an in-house developed

user-interface: Viper (see Section 3.4).

The non-circular fiber cross sections described in detail in this appendix are the

following: lobular, C-shaped, elliptical, and smoothed polygonal. Each of these

sections are defined by at least one shape parameter (e.g. number of edges) and

its area, by means of the effective diameter, deff . The effective diameter of a non-

circular fiber, deff , is defined as the diameter of the circular fiber whose cross section

is equivalent. Whereas the diameter of a non-circular fiber, d, is defined as the

circumscribing diameter of the cross section, i.e. for a circular fiber d = deff .

A lobular fiber is univocally defined by the number of lobes, nl, and the effective

diameter, deff . The number of lobes must be larger or equal to 2. As an example,

a lobular fiber with nl = 4 is shown in Figure A.1a. The following expressions

determine the geometrical features sketched in Figure A.1b to reproduce a lobular

cross section.
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Figure A.1: a) Drawing of the lobular fiber with 4 lobes (nl = 4) and b) detail of
the lobular fiber unit cell.

α =
π

nl
(A.1a)

d = deff

√
π

nl
(1+cscα)2

· (cotα +
√

3 + α)
(A.1b)

γ =
π

6
= 30◦ (A.1c)

r =
d

2(1 + cscα)
(A.1d)

r̂ = r · cscα (A.1e)

r̃ = r · (cotα +
√

3) (A.1f)

The perimeter of a lobular fiber is,

P =
π · d · nl
1 + cscα

(
1

nl
+

1

3

)
(A.2)

And the section can be calculated as

A = nl · r2 · (cotα +
√

3 + α) (A.3)
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d
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∆
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Figure A.2: Drawing of a C-shaped fiber with θ = 220◦ and ξ = 0.4.

The C-shaped fiber is the most complex section designed in this work. Apart

from the effective diameter, it requires two parameters: the angular amplitude (θ)

and the hollowness ratio (ξ). A drawing with the main annotations of a C-shaped

section is shown in Figure A.2. The parameters of the C-shaped fibers considered

in Section 3.3.1 are θ = 90◦ and ξ = 0.1.

d = deff

√
π

θ
2
(1− ξ2) + π

4
(1− ξ)2

(A.4a)

Ro =
d

2
(A.4b)

ξ =
Ri

Ro

(A.4c)

Rm =
1

2
(Ro +Ri) (A.4d)

r =
1

2
(Ro −Ri) (A.4e)

The perimeter and area of a C-shaped cross section are calculated as,

P = θ · (Ro +Ri) + 2πr (A.5)

A =
d2

4
·
[
θ

2
(1− ξ2) +

π

4
(1− ξ)2

]
(A.6)
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To prevent the C-shaped section from self-intersecting when θ > 180◦, the fol-

lowing condition must be fulfilled by the parameters selected:

∆ > 2r ⇒ sin
θ

2
>

1− ξ
1 + ξ

(A.7)

An elliptical fiber is described by the eccentricity parameter, ε, and the effective

diameter. Figures A.3a and b show the sketch of an ellipse indicating its main

features: semi-major axis (a), semi-minor axis (b), focal distance (c), foci (F1, F2)

and center (O). The eccentricity of an ellipse is defined as the ratio between the

focal distance, c, and the semi-major axis, a, i.e. ε = c/a, and is bounded between

0 (circle) and 1 (infinitely long ellipse). The eccentricity of the elliptical fibers

considered in Section 3.3.1 is 0.75.

d = deff · (1− ε2)−1/4 (A.8a)

a =
d

2
(A.8b)

b = a ·
√

1− ε2 (A.8c)

The perimeter of an ellipse can be approximated by the expression of Ramanujan

d

deff

O F1F2

a)

O

b)

F1

b

c
a

Figure A.3: a) Drawing of a elliptical fiber with ε = 0.75 and b) detail of the
geometry.
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(1914) as,

P ≈ π ·
[
3(a+ b)−

√
(3a+ b)(a+ 3b)

]
(A.9)

And the area of an ellipse is given by,

A = π · a · b = πa2
√

1− ε2 (A.10)

A smoothed polygonal (spolygon) cross section is defined by the number of edges,

ne, the smoothing ratio, χ, and the effective diameter, deff . The number of edges

must be larger or equal to 3 (ne ≥ 3), whereas the smoothing ratio, defined as the

ratio between the curvature radius R and the apothem a, is comprised between 0

and 1 (0 < χ < 1). As an example, a smoothed polygonal section with ne = 4

and χ = 0.5 is plotted in Figure A.4a. The smoothing ratio of the spolygon fibers

considered in Section 3.3.1 is 0.3.

The following equations describe the explicit relations among the auxiliary geo-

d

deff
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α

a)

O

b)

α

O′

a

r

r
r̂

Figure A.4: a) Drawing of a smoothed polygonal fiber with 4 edges (ne = 4, χ = 0.5)
and b) detail of the geometry.
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metrical data shown in Figure A.4b and the input parameters (ne, χ, deff).

α =
π

ne
(A.11a)

χ =
r

a
(A.11b)

d = deff

√
π

ne
2

sin 2α− χ2 · (ne · tanα− π)
(A.11c)

r =
d

2
(A.11d)

r̂ =
r

1− χ · (1− cosα)
(A.11e)

The perimeter of an Spolygon fiber is,

P = ne · d · [(1− χ) · sinα + χ · α] (A.12)

And the section can be calculated as

A =
d2

4
·
[ne

2
sin 2α− χ2 · (ne · tanα− π)

]
(A.13)
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BLinear elastic fracture
mechanics solution for a
transversely isotropic solid

The displacements field around the crack tip under mode I in a linear elastic solid

is derived solving the constitutive equation of the material, ε = S · σ. Firstly, the

strain components, ε, are obtained from the derivatives of the displacements field, u.

Then, the compliance tensor, S, which is the inverse of the stiffness tensor, S = Q−1,

is given by the constitutive response of the material, in this case it is shown for an

elastic transversely isotropic material (a = Q11 = Q22, b = Q12, c = Q66). Finally,

the stress vector, σ, is derived from Westergaard’s stress function (Westergaard,

1939).


∂ux
∂x

∂uy
∂y

1
2

(
∂ux
∂y

+ ∂uy
∂x

)
︸ ︷︷ ︸

ε

=
1

c (a2 − b2)


ac −bc 0

−bc ac 0

0 0 a2 − b2


︸ ︷︷ ︸

S


Re Z − y Im Z ′

Re Z + y Im Z ′

−y Re Z ′

︸ ︷︷ ︸
σ

(B.1)

where Z(z∗) = KI/
√

2πz∗, with z∗ being a complex representation in polar coordi-

nates of a material point referred to the crack tip and can be written as z∗ = reiθ.

Integrating the first two components of eq. B.1 and transforming Z and y into polar

coordinates the full displacements field is obtained,



ux
uy

 =
KI

2G
·
√

r

2π
· (κ− cos θ)

cos θ
2

sin θ
2

 (B.2)

where G and κ are material properties as defined in Table 5.1. The energy release

rate (GI) is related with the stress intensity factor (KI) through Irwin’s equation

(Irwin, 1957) asGI = K2
I /E

∗, where E∗ follows the expression shown in Table B.1 for

isotropic and transversely isotropic materials under the hypothesis of plane strain.

Table B.1: Parameters for isotropic and transversely isotropic materials under plane
strain assumption.

Isotropic Transversely isotropica,b

a E·(1−ν)
(1+ν)(1−2ν)

1−νpzνzp
EpEz∆

b Eν
(1+ν)(1−2ν)

νp−νpzνzp
EpEz∆

c E
1+ν

Ep
1+νp

κ 3− 4ν 3−νp−4νpzνzp
1+νp

G E
2·(1+ν)

Ep
2·(1+νp)

E∗ E
1−ν2

Ep
1−νpzνzp

aThe isotropy plane (2-3) and its normal (1) are represented by p and z respectively
b∆ = (1 + νp) · (1− νp − 2νpzνzp)/(E2

pEz)
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CContinuum Damage
Mechanics model for fiber
failure

To consider the fiber failure under longitudinal loading and the nonlinear elastic re-

sponse in the longitudinal direction typical of carbon fibers, a 3-D continuum damage

mechanics model (CDM) was developed. This model is based on the work of Maimi

et al. (2008) and is implemented as a UMAT in Abaqus/Standard (Simulia, 2013).

The material is considered transversely isotropic with the following compliance ma-

trix,

S =



1

(1−D)Ef1

−νf12
Ef1

−νf12
Ef1

0 0 0

1

(1−D)Ef2

−νf23
Ef2

0 0 0

1

(1−D)Ef2
0 0 0

1

(1−D)Gf12
0 0

sym 1

(1−D)Gf12
0

1

(1−D)Gf23


(C.1)

where Ef
1 and Ef

2 are the longitudinal and transverse elastic moduli respectively,

νf12 and νf23 are the longitudinal and transverse Poisson ratios, and Gf
12 and Gf

23 are

the longitudinal and transverse shear moduli. Transverse isotropy of the material is

verified with Gf
23 = Ef

2 /2/(1 + νf23). A single damage variable is represented by D.



Nonlinear elasticity in the longitudinal direction of the fiber is included in the

constitutive model including another parameter, cf , as shown in eq. C.2.

Ef
1 = E0f

1 · (1 + cf · ε11) (C.2)

where E0f
1 is the tangent longitudinal elastic modulus of the fiber when ε11 = 0,

and cf > 0 is the nonlinear parameter. These parameters were obtained fitting

experimental curves from single-fiber tensile tests as described in Chapter 2. Under

uniaxial loading, the expression for the longitudinal stress results from integrating

eq. C.2.

σ11(ε11) =

∫ ε11

0

Ef
1 (ε)dε = E0f

1 ·
(
ε11 +

cf
2
· ε2

11

)
(C.3)

Care must be taken when selecting the compressive strength of the fiber, Xf
c , as

it is a concave quadratic function and its lower bound for Xf
c is Xf

c > E0f
1 /2 cf .

Figure C.1: Stress vs. strain curve of the constitutive model of the fiber under
uniaxial longitudinal loading: nonlinear elastic response (green line) until damage
onset followed by linear softening (red lines).

The damage variable, D, lumps longitudinal damage distinguishing between ten-

sile, D1+, and compressive loading, D1−.
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C. Continuum Damage Mechanics model for fiber failure

D =

D1+ , ε11 ≥ 0

D1− , ε11 < 0

(C.4)

Two damage activation functions are required to represent longitudinal damage

under tension:

F1+ = φ1+ − r1+ ≤ 0

F1− = φ1− − r1− ≤ 0
(C.5)

where φM are the loading functions under longitudinal tension (M = 1+ or t)

and compression (M = 1− or c), and rM are the elastic domain thresholds, which

are initially set to 1 (undamaged) and increase with damage. A maximum stress

criterion governs damage initiation either in tension or compression as:

φ1+ =
σ̃11

Xf
t

φ1− =− σ̃11

Xf
c

(C.6)

The evolution of the elastic domain thresholds, rM , is expressed by the Kuhn-

Tucker conditions preventing damage healing of the material.

ṙM ≥ 0; FM ≤ 0; ṙMFM = 0 (C.7)

These conditions are guaranteed updating the elastic domain thresholds as,

ri1+ = max(ri−1
1+ , ri−1

1− , φ1+)

ri1− = max(ri−1
1− , φ1−)

(C.8)

where i represents the current increment and i − 1 is the previous increment. In

this manner, tensile damage in the material does not penalize the ability of the

constitutive model to hold compressive loads.

The damage evolution laws are defined to implement linear strain softening under

tensile and compressive loads as,
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ε̄M = rM
Xf
M

Ef
11

DM =
εuM · (ε̄M − ε0

M)

ε̄M · (εuM − ε0
M)

(C.9)

where ε̄M is the equivalent longitudinal strain for tension (M = 1+) or compression

(M = 1−), εuM is the ultimate strain, ε0
M is the strain at damage initiation for

tension or compression (see Figure C.1).

Mesh objectivity is achieved through a crack band regularization by tuning the

εuM as a function of the element size, l∗, following Bazant’s scheme (Bazant and Oh,

1983) as,

εuM =
2GM

XM · l∗
(C.10)

where GM is the fracture energy in longitudinal tension or compression, XM is the

tensile or compressive strength and l∗ is the characteristic length of the element.

The convergence of the solving algorithm requires the computation of the mate-

rial tangent constitutive tensor, CT , as:

CT = S−1 : (I−M) (C.11)

where S is the compliance constitutive tensor (eq. C.1), I is the identity tensor and

the tensor M is:

M =
1

(1−D)2

∂D

∂ε11



σ11
Ef1

0 0 0 0 0

σ22
Ef2

0 0 0 0 0

σ33
Ef2

0 0 0 0 0

τ12
Gf12

0 0 0 0 0

τ13
Gf12

0 0 0 0 0

τ23
Gf23

0 0 0 0 0


(C.12)

where the damage variable derivative is,
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C. Continuum Damage Mechanics model for fiber failure

∂D

∂ε11

=
εuM · ε0

M

ε̄2
M · (εuM − ε0

M)
(C.13)

The integration of the constitutive model follows the work flow presented by

Maimi et al. (2008):

1. Read the strain and the strain increment. εi, ∆εi

2. Compute the effective stress. σ̃i = S−1
0 : εi

3. Compute the loading functions. φiM(σ̃i)

4. Compute the threshold values. riM(ri−1
M , φiM)

5. Compute the damage variables. Di
M(riM)

6. Compute the nominal stress tensor. σi = (Si)−1 : (εi + ∆εi)

7. Compute the tangent constitutive tensor. Ci
T = (Si)−1 : (I−Mi)
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